Segmenting trajectories: A framework and algorithms using spatiotemporal criteria

In this paper we address the problem of segmenting a trajectory based on spa- tiotemporal criteria. We require that each segment is homogeneous in the sense that a set of spatiotemporal criteria are fulfilled. We define different such criteria, including location, heading, speed, velocity, curvature, sinuosity, curviness, and shape. We present an algo- rithmic framework that allows us to segment any trajectory into a minimum number of segments under any of these criteria, or any combination of these criteria. In this frame- work, a segmentation can generally be computed in O(n log n) time, where n is the number of edges of the trajectory to be segmented. We also discuss the robustness of our approach.

[1]  Eliezer Gurarie,et al.  A novel method for identifying behavioural changes in animal movement data. , 2009, Ecology letters.

[2]  Lukas Pichl,et al.  Symbolic analysis of indicator time series by quantitative sequence alignment , 2008, Comput. Stat. Data Anal..

[3]  Reinhard Klette,et al.  A Comparative Study on 2D Curvature Estimators , 2007, 2007 International Conference on Computing: Theory and Applications (ICCTA'07).

[4]  S. Benhamou How to reliably estimate the tortuosity of an animal's path: straightness, sinuosity, or fractal dimension? , 2004, Journal of theoretical biology.

[5]  David B. Skillicorn,et al.  Proceedings of the Sixth SIAM International Conference on Data Mining, April 20-22, 2006, Bethesda, MD, USA , 2005, SDM.

[6]  Leonidas J. Guibas,et al.  Randomized incremental construction of Delaunay and Voronoi diagrams , 1990, Algorithmica.

[7]  Prosenjit Bose,et al.  Computing constrained minimum-width annuli of point sets , 1998, Comput. Aided Des..

[8]  Xie Yuan-dan,et al.  Survey on Image Segmentation , 2002 .

[9]  Darcy R. Visscher,et al.  Identifying Movement States From Location Data Using Cluster Analysis , 2010 .

[10]  Micha Sharir,et al.  A subexponential bound for linear programming , 1992, SCG '92.

[11]  Maike Buchin,et al.  An algorithmic framework for segmenting trajectories based on spatio-temporal criteria , 2010, GIS '10.

[12]  Serge Planes,et al.  Strategies and trajectories of coral reef fish larvae optimizing self-recruitment. , 2004, Journal of theoretical biology.

[13]  Wolfgang Bitterlich Representation , Analysis and Visualization of Moving Objects , 2009 .

[14]  Joachim Gudmundsson,et al.  Detecting Commuting Patterns by Clustering Subtrajectories , 2011, Int. J. Comput. Geom. Appl..

[15]  Jerry E. Mueller AN INTRODUCTION TO THE HYDRAULIC AND TOPOGRAPHIC SINUOSITY INDEXES1 , 1968 .

[16]  Allan D. Jepson,et al.  Trajectory segmentation using dynamic programming , 2002, Object recognition supported by user interaction for service robots.

[17]  Corinne Plazanet Measurement , Characterization and Classification for Automated Line Feature Generalization , 1995 .

[18]  H. Müller,et al.  Statistical methods for DNA sequence segmentation , 1998 .

[19]  Ian D. Jonsen,et al.  ROBUST STATE-SPACE MODELING OF ANIMAL MOVEMENT DATA , 2005 .

[20]  Richard Szeliski,et al.  Computer Vision - Algorithms and Applications , 2011, Texts in Computer Science.

[21]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[22]  Philip S. Yu,et al.  Global distance-based segmentation of trajectories , 2006, KDD '06.

[23]  Asok Ray,et al.  Pattern identification in dynamical systems via symbolic time series analysis , 2007, Pattern Recognit..

[24]  Peter S. Fader,et al.  An Exploratory Look at Supermarket Shopping Paths , 2005 .

[25]  Joachim Gudmundsson,et al.  Detecting single file movement , 2008, GIS '08.

[26]  Joachim Gudmundsson,et al.  10491 Results of the break-out group: Gulls Data , 2010, Representation, Analysis and Visualization of Moving Objects.

[27]  Thomas Lewiner,et al.  Curvature and torsion estimators based on parametric curve fitting , 2005, Comput. Graph..

[28]  Subhash Suri,et al.  Offline maintenance of planar configurations , 1991, SODA '91.

[29]  E. Revilla,et al.  A movement ecology paradigm for unifying organismal movement research , 2008, Proceedings of the National Academy of Sciences.

[30]  S. Dark,et al.  The modifiable areal unit problem (MAUP) in physical geography , 2007 .

[31]  Mark de Berg,et al.  Computational geometry: algorithms and applications, 3rd Edition , 1997 .

[32]  Jake K. Aggarwal,et al.  Semantic labeling of track events using time series segmentation and shape analysis , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).

[33]  Shashi Shekhar,et al.  Discovering interesting sub-paths in spatiotemporal datasets: a summary of results , 2011, GIS.

[34]  King-Sun Fu,et al.  A survey on image segmentation , 1981, Pattern Recognit..

[35]  Emo Welzl,et al.  Smallest enclosing disks (balls and ellipsoids) , 1991, New Results and New Trends in Computer Science.

[36]  Simon Benhamou,et al.  Optimal sinuosity in central place foraging movements , 1991, Animal Behaviour.

[37]  Heikki Mannila,et al.  Time series segmentation for context recognition in mobile devices , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[38]  Thomas S. Huang,et al.  ‘Bag of segments’ for motion trajectory analysis , 2008, 2008 15th IEEE International Conference on Image Processing.

[39]  Robert Weibel,et al.  Revealing the physics of movement: Comparing the similarity of movement characteristics of different types of moving objects , 2009, Comput. Environ. Urban Syst..

[40]  Evimaria Terzi,et al.  Efficient Algorithms for Sequence Segmentation , 2006, SDM.

[41]  Cyrus Shahabi,et al.  Robust Time-Referenced Segmentation of Moving Object Trajectories , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[42]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[43]  Nabil H. Mustafa,et al.  Near-Linear Time Approximation Algorithms for Curve Simplification , 2005, Algorithmica.

[44]  Kurt Mehlhorn,et al.  Four Results on Randomized Incremental Constructions , 1992, Comput. Geom..