INK4a/ARF: a multifunctional tumor suppressor locus.

[1]  R. DePinho,et al.  p16Ink4a Interferes with Abelson Virus Transformation by Enhancing Apoptosis , 2004, Journal of Virology.

[2]  Charles J. Sherr,et al.  Physical and Functional Interactions of the Arf Tumor Suppressor Protein with Nucleophosmin/B23 , 2004, Molecular and Cellular Biology.

[3]  R. DePinho,et al.  Telomeres, stem cells, senescence, and cancer. , 2004, The Journal of clinical investigation.

[4]  R. DePinho,et al.  The differential impact of p16INK4a or p19ARF deficiency on cell growth and tumorigenesis , 2004, Oncogene.

[5]  D. Beach,et al.  Polycomb CBX7 has a unifying role in cellular lifespan , 2004, Nature Cell Biology.

[6]  David Hawke,et al.  Tumor suppressor ARF degrades B23, a nucleolar protein involved in ribosome biogenesis and cell proliferation. , 2003, Molecular cell.

[7]  L. Donehower,et al.  Cooperativity of p19ARF, Mdm2, and p53 in murine tumorigenesis , 2003, Oncogene.

[8]  Kristian Helin,et al.  EZH2 is downstream of the pRB‐E2F pathway, essential for proliferation and amplified in cancer , 2003, The EMBO journal.

[9]  A. Berns,et al.  Induction of small cell lung cancer by somatic inactivation of both Trp53 and Rb1 in a conditional mouse model. , 2003, Cancer cell.

[10]  P. Okunieff,et al.  Loss of p16 expression is of prognostic significance in locally advanced prostate cancer: an analysis from the Radiation Therapy Oncology Group protocol 86-10. , 2003, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[11]  N. Sharpless The persistence of senescence. , 2003, Science of aging knowledge environment : SAGE KE.

[12]  L. Chin,et al.  Both products of the mouse Ink4a/Arf locus suppress melanoma formation in vivo , 2003, Oncogene.

[13]  L. Chin,et al.  The INK4a/ARF locus and melanoma , 2003, Oncogene.

[14]  T. Luedde,et al.  p18(INK4c) collaborates with other CDK‐inhibitory proteins in the regenerating liver , 2003, Hepatology.

[15]  N. Gruis,et al.  Homozygous germline mutation of CDKN2A/p16 and glucose‐6‐phosphate dehydrogenase deficiency in a multiple melanoma case , 2003, Melanoma research.

[16]  E. Brambilla,et al.  p14ARF induces G2 arrest and apoptosis independently of p53 leading to regression of tumours established in nude mice , 2003, Oncogene.

[17]  J. Voncken,et al.  Rnf2 (Ring1b) deficiency causes gastrulation arrest and cell cycle inhibition , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Mei-Ling Kuo,et al.  Nucleolar Arf tumor suppressor inhibits ribosomal RNA processing. , 2003, Molecular cell.

[19]  L. Chin,et al.  Components of the Rb pathway are critical targets of UV mutagenesis in a murine melanoma model , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[20]  M. Diaz,et al.  Role of INK4a/Arf locus-encoded senescent checkpoints activated in normal and psoriatic keratinocytes. , 2003, The American journal of pathology.

[21]  G. Peters,et al.  Absence of p16INK4a and truncation of ARF tumor suppressors in chickens , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[22]  G. Peters,et al.  Biallelic Mutations in p16INK4a Confer Resistance to Ras- and Ets-Induced Senescence in Human Diploid Fibroblasts , 2002, Molecular and Cellular Biology.

[23]  P. Diegelman,et al.  Methylthioadenosine phosphorylase, a gene frequently codeleted with p16(cdkN2a/ARF), acts as a tumor suppressor in a breast cancer cell line. , 2002, Cancer research.

[24]  S. Dhanasekaran,et al.  The polycomb group protein EZH2 is involved in progression of prostate cancer , 2002, Nature.

[25]  M. Tomonaga,et al.  Chemotherapy targeting methylthioadenosine phosphorylase (MTAP) deficiency in adult T cell leukemia (ATL) , 2002, Leukemia.

[26]  B. Dörken,et al.  Adenovirus-mediated gene transfer of P16INK4/CDKN2 into bax-negative colon cancer cells induces apoptosis and tumor regression in vivo , 2002, Cancer Gene Therapy.

[27]  W. Hahn,et al.  A Two-Stage, p16INK4A- and p53-Dependent Keratinocyte Senescence Mechanism That Limits Replicative Potential Independent of Telomere Status , 2002, Molecular and Cellular Biology.

[28]  S. Fosmire,et al.  Expression and Significance of p53, Rb, p21/waf-1, p16/ink-4a, and PTEN Tumor Suppressors in Canine Melanoma , 2002, Veterinary pathology.

[29]  P. Pandolfi,et al.  The t(8;21) fusion protein, AML1–ETO, specifically represses the transcription of the p14ARF tumor suppressor in acute myeloid leukemia , 2002, Nature Medicine.

[30]  N. L. Thangue,et al.  p14ARF regulates E2F activity , 2002, Oncogene.

[31]  R. DePinho,et al.  Constitutive telomerase expression promotes mammary carcinomas in aging mice , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[32]  R. DePinho,et al.  p16(INK4a) and p53 deficiency cooperate in tumorigenesis. , 2002, Cancer research.

[33]  R. DePinho,et al.  Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. , 2002, Cancer cell.

[34]  F. Zindy,et al.  The Arf tumor suppressor gene promotes hyaloid vascular regression during mouse eye development , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[35]  F. Sigaux,et al.  Transgenic Expression of the p16INK4a Cyclin-Dependent Kinase Inhibitor Leads to Enhanced Apoptosis and Differentiation Arrest of CD4−CD8− Immature Thymocytes , 2002, The Journal of Immunology.

[36]  Suna Wang,et al.  Hypermethylation of the p14(ARF) gene in ulcerative colitis-associated colorectal carcinogenesis. , 2002, Cancer research.

[37]  C. Korgaonkar,et al.  ARF Function Does Not Require p53 Stabilization or Mdm2 Relocalization , 2002, Molecular and Cellular Biology.

[38]  L. Chin,et al.  Impaired nonhomologous end-joining provokes soft tissue sarcomas harboring chromosomal translocations, amplifications, and deletions. , 2001, Molecular cell.

[39]  E. Lander,et al.  Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[40]  J. Gilley,et al.  One INK4 gene and no ARF at the Fugu equivalent of the human INK4A/ARF/INK4B tumour suppressor locus , 2001, Oncogene.

[41]  J. Campisi Cellular senescence as a tumor-suppressor mechanism. , 2001, Trends in cell biology.

[42]  Wenyi Wei,et al.  Role of p14ARF in Replicative and Induced Senescence of Human Fibroblasts , 2001, Molecular and Cellular Biology.

[43]  A. Berns,et al.  Loss of p16Ink4a confers susceptibility to metastatic melanoma in mice , 2001, Nature.

[44]  D. Carrasco,et al.  Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis , 2001, Nature.

[45]  J. Malvehy,et al.  A melanoma-associated germline mutation in exon 1β inactivates p14ARF , 2001, Oncogene.

[46]  O. Olopade,et al.  Identification of a 1.2 Kb cDNA fragment from a region on 9p21 commonly deleted in multiple tumor types. , 2001, Cancer genetics and cytogenetics.

[47]  F. Zindy,et al.  Differential effects of p19Arf and p16Ink4a loss on senescence of murine bone marrow-derived preB cells and macrophages , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[48]  A. Szalay,et al.  The p14ARF Tumor Suppressor Protein Facilitates Nucleolar Sequestration of Hypoxia-inducible Factor-1α (HIF-1α) and Inhibits HIF-1-mediated Transcription* , 2001, The Journal of Biological Chemistry.

[49]  M. Lindström,et al.  MdmX Binding to ARF Affects Mdm2 Protein Stability and p53 Transactivation* , 2001, The Journal of Biological Chemistry.

[50]  R. Reddel,et al.  Pex19p Dampens the p19ARF-p53-p21WAF1 Tumor Suppressor Pathway* , 2001, The Journal of Biological Chemistry.

[51]  R. DePinho,et al.  Malignant glioma: genetics and biology of a grave matter. , 2001, Genes & development.

[52]  G. Peters,et al.  Stabilization of p53 by p14ARF without relocation of MDM2 to the nucleolus , 2001, Nature Cell Biology.

[53]  T. Parisi,et al.  The Human Tumor Suppressor ARF Interacts with Spinophilin/Neurabin II, a Type 1 Protein-phosphatase-binding Protein* , 2001, The Journal of Biological Chemistry.

[54]  R. Kofler,et al.  The Cell Cycle Inhibitor p16INK4A Sensitizes Lymphoblastic Leukemia Cells to Apoptosis by Physiologic Glucocorticoid Levels* , 2001, The Journal of Biological Chemistry.

[55]  J. Herman,et al.  p14ARF silencing by promoter hypermethylation mediates abnormal intracellular localization of MDM2. , 2001, Cancer research.

[56]  David M. Livingston,et al.  p19ARF targets certain E2F species for degradation , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[57]  D. Sidransky,et al.  p16(MTS-1/CDKN2/INK4a) in cancer progression. , 2001, Experimental cell research.

[58]  E. Brambilla,et al.  Human ARF binds E2F1 and inhibits its transcriptional activity , 2001, Oncogene.

[59]  C. Larsen,et al.  Human ARF protein interacts with Topoisomerase I and stimulates its activity , 2001, Oncogene.

[60]  R. DePinho,et al.  Efficiency Alleles of the Pctr1 Modifier Locus for Plasmacytoma Susceptibility , 2001, Molecular and Cellular Biology.

[61]  D. Bishop,et al.  A germline deletion of p14(ARF) but not CDKN2A in a melanoma-neural system tumour syndrome family. , 2001, Human molecular genetics.

[62]  D. Carson,et al.  A methylthioadenosine phosphorylase (MTAP) fusion transcript identifies a new gene on chromosome 9p21 that is frequently deleted in cancer , 2000, Oncogene.

[63]  Marc J. van de Vijver,et al.  Senescence bypass screen identifies TBX2, which represses Cdkn2a (p19ARF) and is amplified in a subset of human breast cancers , 2000, Nature Genetics.

[64]  M. Roussel,et al.  p53-independent functions of the p19(ARF) tumor suppressor. , 2000, Genes & development.

[65]  R. DePinho,et al.  Cellular Senescence Minireview Mitotic Clock or Culture Shock? , 2000, Cell.

[66]  V. Godfrey,et al.  Functional Collaboration between Different Cyclin-Dependent Kinase Inhibitors Suppresses Tumor Growth with Distinct Tissue Specificity , 2000, Molecular and Cellular Biology.

[67]  M. Barbacid,et al.  Limited overlapping roles of P15INK4b and P18INK4c cell cycle inhibitors in proliferation and tumorigenesis , 2000, The EMBO journal.

[68]  M. Roussel,et al.  Cooperative Signals Governing ARF-Mdm2 Interaction and Nucleolar Localization of the Complex , 2000, Molecular and Cellular Biology.

[69]  B. Wiedenmann,et al.  A Novel Function for the Tumor Suppressor p16INK4a , 2000, The Journal of Cell Biology.

[70]  W. Hahn,et al.  Human Keratinocytes That Express hTERT and Also Bypass a p16INK4a-Enforced Mechanism That Limits Life Span Become Immortal yet Retain Normal Growth and Differentiation Characteristics , 2000, Molecular and Cellular Biology.

[71]  R. Levine,et al.  Inactivation of p53 and Retinoblastoma Family Pathways in Canine Osteosarcoma Cell Lines , 2000, Veterinary pathology.

[72]  Goberdhan P Dimri,et al.  Regulation of a Senescence Checkpoint Response by the E2F1 Transcription Factor and p14ARF Tumor Suppressor , 2000, Molecular and Cellular Biology.

[73]  J. Herman,et al.  Hypermethylation-associated inactivation of p14(ARF) is independent of p16(INK4a) methylation and p53 mutational status. , 2000, Cancer research.

[74]  M. Plumb,et al.  Allelic loss and promoter hypermethylation of the p15INK4b gene features in mouse radiation-induced lymphoid – but not myeloid – leukaemias , 1999, Leukemia.

[75]  Y. Wan,et al.  A role for E2F1 in the induction of ARF, p53, and apoptosis during thymic negative selection. , 1999, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research.

[76]  L. Kedes,et al.  Twist is a potential oncogene that inhibits apoptosis. , 1999, Genes & development.

[77]  H. Scherthan,et al.  The p16/Cdkn2a/Ink4a Gene Is Frequently Deleted in Nitrosourea-Induced Rat Glial Tumors , 1999, Pathobiology.

[78]  Peter A. Jones,et al.  Tissue-specific alternative splicing in the human INK4a/ARF cell cycle regulatory locus , 1999, Oncogene.

[79]  S. Toyokuni,et al.  High incidence of allelic loss on chromosome 5 and inactivation of p15INK4B and p16INK4A tumor suppressor genes in oxystress-induced renal cell carcinoma of rats , 1999, Oncogene.

[80]  G. Peters,et al.  Role of the alternative INK4A proteins in human keratinocyte senescence: evidence for the specific inactivation of p16INK4A upon immortalization. , 1999, Cancer research.

[81]  M. You,et al.  Cdkn2a encodes functional variation of p16INK4a but not p14ARF, which confers selection in mouse lung tumorigenesis , 1999, Molecular carcinogenesis.

[82]  D. H. Randle,et al.  Tumor spectrum in ARF-deficient mice. , 1999, Cancer research.

[83]  Y. Xiong,et al.  Mutations in human ARF exon 2 disrupt its nucleolar localization and impair its ability to block nuclear export of MDM2 and p53. , 1999, Molecular cell.

[84]  Charles J. Sherr,et al.  Nucleolar Arf sequesters Mdm2 and activates p53 , 1999, Nature Cell Biology.

[85]  R. DePinho,et al.  The INK4A/ARF locus and its two gene products. , 1999, Current opinion in genetics & development.

[86]  R. DePinho,et al.  The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus , 1999, Nature.

[87]  D. Carson,et al.  Homozygous deletions of methylthioadenosine phosphorylase (MTAP) are more frequent than p16INK4A (CDKN2) homozygous deletions in primary non-small cell lung cancers (NSCLC) , 1998, Oncogene.

[88]  T. Kiyono,et al.  Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells , 1998, Nature.

[89]  R. DePinho,et al.  p19(Arf) induces p53-dependent apoptosis during abelson virus-mediated pre-B cell transformation. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[90]  G. Peters,et al.  The p16INK4a/CDKN2A tumor suppressor and its relatives. , 1998, Biochimica et biophysica acta.

[91]  D. Woods,et al.  Senescence of human fibroblasts induced by oncogenic Raf. , 1998, Genes & development.

[92]  E Gabrielson,et al.  Aberrant methylation of p16(INK4a) is an early event in lung cancer and a potential biomarker for early diagnosis. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[93]  Philip D. Jeffrey,et al.  Structural basis for inhibition of the cyclin-dependent kinase Cdk6 by the tumour suppressor p16INK4a , 1998, Nature.

[94]  Karen H. Vousden,et al.  p14ARF links the tumour suppressors RB and p53 , 1998, Nature.

[95]  M. Serrano,et al.  p19ARF links the tumour suppressor p53 to Ras , 1998, Nature.

[96]  Kevin Ryan,et al.  The alternative product from the human CDKN2A locus, p14ARF, participates in a regulatory feedback loop with p53 and MDM2 , 1998, The EMBO journal.

[97]  S. Clark,et al.  Loss of p16INK4 expression by methylation is associated with lifespan extension of human mammary epithelial cells. , 1998, Cancer research.

[98]  J L Cleveland,et al.  Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. , 1998, Genes & development.

[99]  S. Lowe,et al.  E1A signaling to p53 involves the p19(ARF) tumor suppressor. , 1998, Genes & development.

[100]  A. Brenner,et al.  Increased p16 expression with first senescence arrest in human mammary epithelial cells and extended growth capacity with p16 inactivation , 1998, Oncogene.

[101]  F. Zindy,et al.  Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[102]  S. Jiang,et al.  Large cell neuroendocrine carcinoma of the lung: a histologic and immunohistochemical study of 22 cases. , 1998, The American journal of surgical pathology.

[103]  S. Miyoshi,et al.  Disruption of the RB pathway and cell‐proliferative activity in non‐small‐cell lung cancers , 1998, International journal of cancer.

[104]  D. Wong,et al.  Inactivation of p16 in Human Mammary Epithelial Cells by CpG Island Methylation , 1998, Molecular and Cellular Biology.

[105]  Ken Chen,et al.  The Ink4a Tumor Suppressor Gene Product, p19Arf, Interacts with MDM2 and Neutralizes MDM2's Inhibition of p53 , 1998, Cell.

[106]  Yue Xiong,et al.  ARF Promotes MDM2 Degradation and Stabilizes p53: ARF-INK4a Locus Deletion Impairs Both the Rb and p53 Tumor Suppression Pathways , 1998, Cell.

[107]  E. Ramsay,et al.  Cdkn2a, the cyclin-dependent kinase inhibitor encoding p16INK4a and p19ARF, is a candidate for the plasmacytoma susceptibility locus, Pctr1. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[108]  A. Mes-Masson,et al.  Analysis of the p16 tumor suppressor gene in early‐stage prostate cancer , 1998, Molecular carcinogenesis.

[109]  Richard A. Ashmun,et al.  Tumor Suppression at the Mouse INK4a Locus Mediated by the Alternative Reading Frame Product p19 ARF , 1997, Cell.

[110]  L. Chin,et al.  Cooperative effects of INK4a and ras in melanoma susceptibility in vivo. , 1997, Genes & development.

[111]  R. deVere White,et al.  Frequent alteration of CDKN2 (p16(INK4A)/MTS1) expression in human primary prostate carcinomas. , 1997, Clinical cancer research : an official journal of the American Association for Cancer Research.

[112]  F. Zindy,et al.  Expression of the p16INK4a tumor suppressor versus other INK4 family members during mouse development and aging , 1997, Oncogene.

[113]  J. Herman,et al.  Deletional, mutational, and methylation analyses of CDKN2 (p16/MTS1) in primary and metastatic prostate cancer , 1997, Genes, chromosomes & cancer.

[114]  H. Koeffler,et al.  Molecular analysis of the INK4 family of genes in prostate carcinomas. , 1997, The Journal of urology.

[115]  M. Ng,et al.  Frequent hypermethylation of p16 and p15 genes in multiple myeloma. , 1997, Blood.

[116]  J. Herman,et al.  Frequent aberrant methylation of p16INK4a in primary rat lung tumors , 1997, Molecular and cellular biology.

[117]  M. Link,et al.  Frequent and selective methylation of p15 and deletion of both p15 and p16 in T-cell acute lymphoblastic leukemia. , 1997, Cancer research.

[118]  J. Moul,et al.  Mutations of the p16 gene product are rare in prostate cancer , 1997, The Prostate.

[119]  D. Bostwick,et al.  Absence of p16/MTS1 gene mutations in human prostate cancer. , 1996, Carcinogenesis.

[120]  R. Nairn,et al.  A CDKN2-like polymorphism in Xiphophorus LG V is associated with UV-B-induced melanoma formation in platyfish-swordtail hybrids. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[121]  P. Tran,et al.  Genomic cloning of methylthioadenosine phosphorylase: a purine metabolic enzyme deficient in multiple different cancers. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[122]  L. Chin,et al.  Role of the INK4a Locus in Tumor Suppression and Cell Mortality , 1996, Cell.

[123]  G. Peters,et al.  Regulation of p16CDKN2 expression and its implications for cell immortalization and senescence , 1996, Molecular and cellular biology.

[124]  T. Savarese,et al.  Gene deletion chemoselectivity: codeletion of the genes for p16(INK4), methylthioadenosine phosphorylase, and the alpha- and beta-interferons in human pancreatic cell carcinoma lines and its implications for chemotherapy. , 1996, Cancer research.

[125]  J. Herman,et al.  Hypermethylation-associated inactivation indicates a tumor suppressor role for p15INK4B. , 1996, Cancer research.

[126]  N. Hayward,et al.  Germline mutations in the p16INK4a binding domain of CDK4 in familial melanoma , 1996, Nature Genetics.

[127]  F. Zindy,et al.  Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest , 1995, Cell.

[128]  B. Peters,et al.  Analysis of the p16 gene, CDKN2, in 17 Australian melanoma kindreds. , 1995, Oncogene.

[129]  J. Slingerland,et al.  Germline p16INK4A mutation and protein dysfunction in a family with inherited melanoma. , 1995, Oncogene.

[130]  L. Sandkuijl,et al.  Homozygotes for CDKN2 (p16) germline mutation in Dutch familial melanoma kindreds , 1995, Nature Genetics.

[131]  J. Bartek,et al.  Retinoblastoma-protein-dependent cell-cycle inhibition by the tumour suppressor p16 , 1995, Nature.

[132]  C. D. Edwards,et al.  Reciprocal Rb inactivation and p16INK4 expression in primary lung cancers and cell lines. , 1995, Cancer research.

[133]  W. Clark,et al.  Germline p16 mutations in familial melanoma , 1994, Nature Genetics.

[134]  M. Skolnick,et al.  A cell cycle regulator potentially involved in genesis of many tumor types. , 1994, Science.

[135]  F. Kaye,et al.  Absence of p16INK4 protein is restricted to the subset of lung cancer lines that retains wildtype RB. , 1994, Oncogene.

[136]  G. Hannon,et al.  A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4 , 1993, Nature.

[137]  M. Wick,et al.  Large cell carcinoma of the lung with neuroendocrine differentiation. A comparison with large cell "undifferentiated" pulmonary tumors. , 1992, American journal of clinical pathology.