Axiomatising Linear Time Mu-calculus

We present a sound and complete axiomatisation for the linear time mu-calculus νTL, a language extending standard linear time temporal logic with fixpoint operators. The completeness proof is based on a new bi-aconjunctive non-alternating normal form for νTL-formulae.

[1]  Wolfgang Thomas,et al.  Automata on Infinite Objects , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[2]  Chin-Laung Lei,et al.  Efficient Model Checking in Fragments of the Propositional Mu-Calculus (Extended Abstract) , 1986, LICS.

[3]  Damian Niwinski On Fixed-Point Clones (Extended Abstract) , 1986, ICALP.

[4]  David E. Muller,et al.  Alternating Automata. The Weak Monadic Theory of the Tree, and its Complexity , 1986, ICALP.

[5]  Colin Stirling,et al.  Modal and temporal logics , 1993, LICS 1993.

[6]  Igor Walukiewicz,et al.  Completeness of Kozen's axiomatisation of the propositional /spl mu/-calculus , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.

[7]  E. Allen Emerson,et al.  An Automata Theoretic Decision Procedure for the Propositional Mu-Calculus , 1989, Inf. Comput..

[8]  Dexter Kozen,et al.  RESULTS ON THE PROPOSITIONAL’p-CALCULUS , 2001 .

[9]  Igor Walukiewicz On completeness of the mu -calculus , 1993, [1993] Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science.

[10]  Robert McNaughton,et al.  Testing and Generating Infinite Sequences by a Finite Automaton , 1966, Inf. Control..

[11]  Howard Barringer,et al.  Temporal Logic with Fixed Points , 1987, Temporal Logic in Specification.

[12]  D. Siefkes Büchi's monadic second order successor arithmetic , 1970 .

[13]  Mads Dam,et al.  Fixed Points of Büchi Automata , 1992, FSTTCS.

[14]  E. Allen Emerson,et al.  Temporal and Modal Logic , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[15]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .

[16]  Amir Pnueli,et al.  A really abstract concurrent model and its temporal logic , 1986, POPL '86.

[17]  Damian Niwinski,et al.  Fixed point characterization of weak monadic logic definable sets of trees , 1992, Tree Automata and Languages.

[18]  David Walker,et al.  Local Model Checking in the Modal mu-Calculus , 1991, Theor. Comput. Sci..

[19]  Moshe Y. Vardi A temporal fixpoint calculus , 1988, POPL '88.

[20]  Pierre Wolper,et al.  Synthesis of Communicating Processes from Temporal Logic Specifications , 1981, TOPL.

[21]  Pierre Wolper,et al.  Reasoning About Infinite Computations , 1994, Inf. Comput..

[22]  Pierre Wolper Temporal Logic Can Be More Expressive , 1983, Inf. Control..