Implementation of Isogeometric Fast Multipole Boundary Element Methods for 2D Half-Space Acoustic Scattering Problems with Absorbing Boundary Condition

Isogeometric Analysis (IGA), which tries to bridge the gap between Computer Aided Engineering (CAE) and Computer Aided Design (CAD), has been widely proposed in recent research. According to the co...

[1]  Graham Coates,et al.  Extended isogeometric boundary element method (XIBEM) for three-dimensional medium-wave acoustic scattering problems , 2015 .

[2]  Seung-Wook Lee,et al.  Isogeometric topological shape optimization using dual evolution with boundary integral equation and level sets , 2017, Comput. Aided Des..

[3]  Thomas J. R. Hughes,et al.  Isogeometric boundary-element analysis for the wave-resistance problem using T-splines , 2014 .

[4]  Zafer Gürdal,et al.  Isogeometric sizing and shape optimisation of beam structures , 2009 .

[5]  Panagiotis D. Kaklis,et al.  Ship-hull shape optimization with a T-spline based BEM-isogeometric solver , 2015 .

[6]  B. H. Nguyen,et al.  An isogeometric symmetric Galerkin boundary element method for two-dimensional crack problems , 2016 .

[7]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[8]  Naoshi Nishimura,et al.  Recent Advances and Emerging Applications of the Boundary Element Method , 2011 .

[9]  Vinh Phu Nguyen,et al.  Isogeometric analysis: An overview and computer implementation aspects , 2012, Math. Comput. Simul..

[10]  Panagiotis D. Kaklis,et al.  A BEM-isogeometric method for the ship wave-resistance problem , 2013 .

[11]  Trond Kvamsdal,et al.  Isogeometric analysis using LR B-splines , 2014 .

[12]  Yijun Liu,et al.  Adaptive fast multipole boundary element method for three-dimensional half-space acoustic wave problems , 2009 .

[13]  W. Wall,et al.  Isogeometric structural shape optimization , 2008 .

[14]  R. Schmidt,et al.  Isogeometric shape optimization of shells using semi-analytical sensitivity analysis and sensitivity weighting , 2014 .

[15]  S. Marburg The Burton and Miller method: Unlocking another mystery of its coupling parameter , 2016 .

[16]  T. Takahashi,et al.  An application of fast multipole method to isogeometric boundary element method for Laplace equation in two dimensions , 2012 .

[17]  S. Marburg,et al.  An Adjoint Operator Approach for Sensitivity Analysis of Radiated Sound Power in Fully Coupled Structural-Acoustic Systems , 2017 .

[18]  S. Marburg Developments in structural-acoustic optimization for passive noise control , 2002 .

[19]  S. Marburg,et al.  INFLUENCE OF ELEMENT TYPES ON NUMERIC ERROR FOR ACOUSTIC BOUNDARY ELEMENTS , 2003 .

[20]  J. Trevelyan,et al.  Extended isogeometric boundary element method (XIBEM) for two-dimensional Helmholtz problems , 2013 .

[21]  Seung-Hyun Ha,et al.  Isogeometric shape design optimization: exact geometry and enhanced sensitivity , 2009 .

[22]  Haibo Chen,et al.  2D Acoustic Design Sensitivity Analysis Based on Adjoint Variable Method Using Different Types of Boundary Elements , 2016 .

[23]  C. Zheng,et al.  Is the Burton–Miller formulation really free of fictitious eigenfrequencies? , 2015 .

[24]  V. Rokhlin Rapid Solution of Integral Equations of Scattering Theory , 1990 .

[25]  C. Zheng,et al.  A wideband FMBEM for 2D acoustic design sensitivity analysis based on direct differentiation method , 2013 .

[26]  John A. Evans,et al.  Isogeometric finite element data structures based on Bézier extraction of NURBS , 2011 .

[27]  Jens Gravesen,et al.  Isogeometric Shape Optimization of Vibrating Membranes , 2011 .

[28]  S. Marburg SIX BOUNDARY ELEMENTS PER WAVELENGTH: IS THAT ENOUGH? , 2002 .

[29]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[30]  P. Kerfriden,et al.  Isogeometric boundary element methods for three dimensional static fracture and fatigue crack growth , 2017 .

[31]  Ramani Duraiswami,et al.  Fast multipole methods on graphics processors , 2008, J. Comput. Phys..

[32]  Norbert Heuer,et al.  Adaptive Boundary Element Methods , 2014 .

[33]  Guangyao Li,et al.  Isogeometric analysis in BIE for 3-D potential problem , 2012 .

[34]  V. Popov,et al.  An O(N) Taylor series multipole boundary element method for three-dimensional elasticity problems , 2001 .

[35]  S. Marburg,et al.  Structural–acoustic sensitivity analysis of radiated sound power using a finite element/ discontinuous fast multipole boundary element scheme , 2016 .

[36]  T. Rabczuk,et al.  A two-dimensional Isogeometric Boundary Element Method for elastostatic analysis , 2012 .

[37]  Onur Atak,et al.  An isogeometric indirect boundary element method for solving acoustic problems in open-boundary domains , 2017 .

[38]  Tetsuya Sakuma,et al.  Efficient technique in low-frequency fast multipole boundary element method for plane-symmetric acoustic problems , 2012 .

[39]  T. Takahashi,et al.  A wideband fast multipole boundary element method for three dimensional acoustic shape sensitivity analysis based on direct differentiation method , 2012 .

[40]  M. Scott,et al.  Acoustic isogeometric boundary element analysis , 2014 .

[41]  P. Kerfriden,et al.  Shape optimization directly from CAD: An isogeometric boundary element approach using T-splines , 2017 .

[42]  C. Y. Dong,et al.  An isogeometric boundary element method for three dimensional potential problems , 2017, J. Comput. Appl. Math..

[43]  C. Zheng,et al.  FEM/wideband FMBEM coupling for structural–acoustic design sensitivity analysis , 2014 .

[44]  G. F. Miller,et al.  The application of integral equation methods to the numerical solution of some exterior boundary-value problems , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[45]  Panagiotis D. Kaklis,et al.  An isogeometric BEM for exterior potential-flow problems in the plane , 2009, Symposium on Solid and Physical Modeling.

[46]  J. Trevelyan,et al.  An isogeometric boundary element method for elastostatic analysis: 2D implementation aspects , 2013, 1302.5305.