A Duality Method for Micromagnetics

We present a new method for micromagnetics based on replacing the nonlocal total energy of magnetizations by a new local energy for divergence-free fields and then studying the dual Legendre functional of this new energy restricted on gradient fields. We establish a Fenchel-type duality principle relevant to the minimization for these problems. The dual functional may be written as a convex integral functional of gradients, and its minimization problem will be solved by standard minimization procedures in the calculus of variations. Special emphasis is placed on the analysis of existence/nonexistence, depending on the applied field and the physical domain. In particular, we describe a precise procedure to check the existence of magnetization of minimal energy for ellipsoid domains.

[1]  V. Barbu,et al.  Convexity and optimization in banach spaces , 1972 .

[2]  F. Brailsford,et al.  Physical principles of magnetism , 1966 .

[3]  Robert V. Kohn,et al.  Recent analytical developments in micromagnetics , 2004 .

[4]  C. Melcher A dual approach to regularity in thin film micromagnetics , 2007 .

[5]  E. M. Lifshitz,et al.  Electrodynamics of continuous media , 1961 .

[6]  P. Pedregal Parametrized measures and variational principles , 1997 .

[7]  Luc Tartar,et al.  Beyond young measures , 1995 .

[8]  Irene Fonseca,et al.  A-B quasiconvexity and implicit partial differential equations , 2002 .

[9]  Roger Temam,et al.  On the theory and numerical analysis of the Navier-Stokes equations , 1973 .

[10]  P. Celada,et al.  A sharp attainment result for nonconvex variational problems , 2004 .

[11]  Antonio DeSimone,et al.  Energy minimizers for large ferromagnetic bodies , 1993 .

[12]  Robert V. Kohn,et al.  A reduced theory for thin‐film micromagnetics , 2002 .

[13]  Pablo Pedregal,et al.  Relaxation in magnetostriction , 2000 .

[14]  Ali Taheri,et al.  Local minimizers in micromagnetics and related problems , 2002 .

[15]  Stefan Müller,et al.  Optimal Existence Theorems for Nonhomogeneous Differential Inclusions , 2001 .

[16]  Pablo Pedregal,et al.  On two-dimensional ferromagnetism , 2009, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[17]  P. Pedregal,et al.  Relaxation in ferromagnetism: The rigid case , 1994 .

[18]  Antonio De Simone,et al.  Energy minimizers for large ferromagnetic bodies , 1993 .

[19]  Robert V. Kohn,et al.  Two–dimensional modelling of soft ferromagnetic films , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[20]  Richard D. James,et al.  Micromagnetics of very thin films , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[21]  O. D. Kellogg Foundations of potential theory , 1934 .

[22]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[23]  Irene Fonseca,et al.  A -Quasiconvexity. lower semicontinuity, and young measures , 1999 .

[24]  Bernard Dacorogna,et al.  Differential inclusions for differential forms , 2007 .

[25]  M. Kružík,et al.  Mesoscopic model for ferromagnets with isotropic hardening , 2005 .

[26]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[27]  David Kinderlehrer,et al.  Frustration in ferromagnetic materials , 1990 .

[28]  Andreas Prohl,et al.  Recent Developments in the Modeling, Analysis, and Numerics of Ferromagnetism , 2006, SIAM Rev..

[29]  B. Dacorogna,et al.  General existence theorems for Hamilton-Jacobi equations in the scalar and vectorial cases , 1997 .