Interferometric synthetic aperture radar (InSAR) technology can obtain one-dimensional surface displacements in the radar line of sight (LOS). In the field of mining subsidence, large 3D movements often occur at the same time, and hence InSAR derived one-dimensional LOS displacements can hardly reflect the actual surface motion in mining areas. To realize the monitoring of three-dimensional large surface displacements in mining areas, a method for monitoring three-dimensional large surface displacements in mining areas that combines SAR pixel offset tracking (OT) and an improved mining subsidence model is proposed in this article. First, a new functional relationship between surface subsidence and horizontal movement combined with the characteristics of the overburden rock stress and the deformation characteristics of the fractured rock mass in coal mining areas is established. Then, a three-dimensional surface deformation model is established based on the proposed relationship between surface subsidence and horizontal movement and the radar projection equation, and finally, the optimal parameters of the deformation model are inverted iteratively using LOS deformation results obtained by OT method to retrieve the three-dimensional large displacements of the surface. The significant advantage of the method proposed in this article is that it can accurately acquire the 3D large surface displacements using only two SAR amplitude images with the same imaging geometry. To verify the accuracy and reliability of the proposed algorithm, two scenes of high-resolution spotlight TerraSAR-X images are used in this paper to conduct a three-dimensional surface displacement monitoring experiment on a working panel in the Daliuta mining area in Shaanxi Province, China, based on the proposed method. Experimental monitoring results show that the maximum surface subsidence is approximately 4.5 m, and the maximum horizontal movements in the strike and dip directions are approximately 1.4 m and 1.2 m, respectively. Using GPS measurements to verify the monitoring results, the root mean square error (RMSE) of vertical subsidence is 6.8 cm, and the RMSE of horizontal movement is 7.1 cm. Compared with those in the original mining subsidence model, the accuracies of vertical subsidence and horizontal movement in the proposed model are increased by 28.2% and 37.5%, respectively, which proves the reliability and accuracy of the proposed method.