Structure, function and evolution of the hemagglutinin-esterase proteins of corona- and toroviruses

[1]  E. Morita,et al.  Characterization of haemagglutinin-esterase protein (HE) of murine corona virus DVIM by monoclonal antibodies , 2014, Archives of Virology.

[2]  K. Sugiyama,et al.  Haemagglutinin-esterase protein (HE) of murine corona virus: DVIMD (diarrhea virus of infant mice) , 2014, Archives of Virology.

[3]  S. Weiss,et al.  Expression of Hemagglutinin Esterase Protein from Recombinant Mouse Hepatitis Virus Enhances Neurovirulence , 2005, Journal of Virology.

[4]  P. Rottier,et al.  Luxury at a Cost? Recombinant Mouse Hepatitis Viruses Expressing the Accessory Hemagglutinin Esterase Protein Display Reduced Fitness In Vitro , 2005, Journal of Virology.

[5]  P. Briza,et al.  Nidovirus Sialate-O-Acetylesterases , 2005, Journal of Biological Chemistry.

[6]  Samson S. Y. Wong,et al.  Characterization and Complete Genome Sequence of a Novel Coronavirus, Coronavirus HKU1, from Patients with Pneumonia , 2005, Journal of Virology.

[7]  J. Lepault,et al.  Severe acute respiratory syndrome coronavirus (SARS-CoV) infection inhibition using spike protein heptad repeat-derived peptides. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[8]  B. Berkhout,et al.  Identification of a new human coronavirus , 2004, Nature Medicine.

[9]  R. Schauer Sialic acids: fascinating sugars in higher animals and man. , 2004, Zoology.

[10]  K. Falk,et al.  Infectious Salmon Anemia Virus Specifically Binds to and Hydrolyzes 4-O-Acetylated Sialic Acids , 2004, Journal of Virology.

[11]  V. Aspehaug,et al.  Identification and Characterization of Viral Structural Proteins of Infectious Salmon Anemia Virus , 2004, Journal of Virology.

[12]  A. Gorbalenya,et al.  A comparative sequence analysis to revise the current taxonomy of the family Coronaviridae , 2003, Archives of Virology.

[13]  Marian C. Horzinek,et al.  Phylogenetic and Evolutionary Relationships among Torovirus Field Variants: Evidence for Multiple Intertypic Recombination Events , 2003, Journal of Virology.

[14]  B. Bosch,et al.  The Coronavirus Spike Protein Is a Class I Virus Fusion Protein: Structural and Functional Characterization of the Fusion Core Complex , 2003, Journal of Virology.

[15]  Y. Guan,et al.  Unique and Conserved Features of Genome and Proteome of SARS-coronavirus, an Early Split-off From the Coronavirus Group 2 Lineage , 2003, Journal of Molecular Biology.

[16]  Christian Drosten,et al.  Characterization of a Novel Coronavirus Associated with Severe Acute Respiratory Syndrome , 2003, Science.

[17]  Obi L. Griffith,et al.  The Genome Sequence of the SARS-Associated Coronavirus , 2003, Science.

[18]  Xuming Zhang,et al.  The Spike but Not the Hemagglutinin/Esterase Protein of Bovine Coronavirus Is Necessary and Sufficient for Viral Infection , 2002, Virology.

[19]  W. Wurzer,et al.  The sialate-4-O-acetylesterases of coronaviruses related to mouse hepatitis virus: a proposal to reorganize group 2 Coronaviridae. , 2002, The Journal of general virology.

[20]  C. Richardson,et al.  Notice of retraction to "The novel hemagglutinin-esterase genes of human torovirus and Breda virus". [Virus Research 64 (1999) 137-149]. , 2001, Virus Research.

[21]  M. Buchmeier,et al.  Coronavirus Spike Proteins in Viral Entry and Pathogenesis , 2001, Virology.

[22]  C. Richardson,et al.  The novel hemagglutinin-esterase genes of human torovirus and Breda virus , 1999, Virus Research.

[23]  R. Lamb,et al.  Cell Surface Expression of Biologically Active Influenza C Virus HEF Glycoprotein Expressed from cDNA , 1999, Journal of Virology.

[24]  G. Regl,et al.  The Hemagglutinin-Esterase of Mouse Hepatitis Virus Strain S Is a Sialate-4-O-Acetylesterase , 1999, Journal of Virology.

[25]  J. Skehel,et al.  X‐ray crystallographic determination of the structure of the influenza C virus haemagglutinin‐esterase‐fusion glycoprotein , 1999, Acta crystallographica. Section D, Biological crystallography.

[26]  A. Klausegger,et al.  Identification of a Coronavirus Hemagglutinin-Esterase with a Substrate Specificity Different from Those of Influenza C Virus and Bovine Coronavirus , 1999, Journal of Virology.

[27]  J. Skehel,et al.  Structure of the haemagglutinin-esterase-fusion glycoprotein of influenza C virus , 1998, Nature.

[28]  R. Tellier,et al.  Bovine torovirus: Sequencing of the structural genes and expression of the nucleocapsid protein of Breda virus , 1998, Virus Research.

[29]  Marian C. Horzinek,et al.  Identification and Characterization of a Porcine Torovirus , 1998, Journal of Virology.

[30]  J. Kamerling,et al.  Chemistry, biochemistry and biology of sialic acids☆ , 1997, New Comprehensive Biochemistry.

[31]  Marian C. Horzinek,et al.  Hemagglutinin-esterase, a novel structural protein of torovirus , 1997, Journal of virology.

[32]  Marian C. Horzinek,et al.  The Genome Organization of the Nidovirales: Similarities and Differences between Arteri-, Toro-, and Coronaviruses☆ , 1997, Seminars in Virology.

[33]  G. Herrler,et al.  Virus entry into a polarized epithelial cell line (MDCK): similarities and dissimilarities between influenza C virus and bovine coronavirus. , 1996, The Journal of general virology.

[34]  H. Klenk,et al.  The catalytic triad of the influenza C virus glycoprotein HEF esterase: characterization by site-directed mutagenesis and functional analysis. , 1995, The Journal of general virology.

[35]  J. Rossen,et al.  Interaction of mouse hepatitis virus (MHV) spike glycoprotein with receptor glycoprotein MHVR is required for infection with an MHV strain that expresses the hemagglutinin-esterase glycoprotein , 1995, Journal of virology.

[36]  G. Herrler,et al.  Persistent influenza C virus possesses distinct functional properties due to a modified HEF glycoprotein. , 1994, The Journal of general virology.

[37]  G. Herrler,et al.  Structural and Functional Analysis of the Surface Protein of Human Coronavirus OC43 , 1993, Virology.

[38]  C. Dieffenbach,et al.  Mouse hepatitis virus strain A59 and blocking antireceptor monoclonal antibody bind to the N-terminal domain of cellular receptor. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[39]  N. Beauchemin,et al.  Several members of the mouse carcinoembryonic antigen-related glycoprotein family are functional receptors for the coronavirus mouse hepatitis virus-A59 , 1993, Journal of virology.

[40]  M. Lai,et al.  Mouse hepatitis virus utilizes two carcinoembryonic antigens as alternative receptors , 1992, Journal of virology.

[41]  L. Babiuk,et al.  Synthesis and processing of the haemagglutinin-esterase glycoprotein of bovine coronavirus encoded in the E3 region of adenovirus. , 1992, The Journal of general virology.

[42]  F. Kitame,et al.  Selection of antigenically distinct variants of influenza C viruses by the host cell. , 1992, Virology.

[43]  F. Kitame,et al.  Location of neutralizing epitopes on the hemagglutinin-esterase protein of influenza C virus. , 1992, Virology.

[44]  H. Klenk,et al.  A single point mutation of the influenza C virus glycoprotein (HEF) changes the viral receptor-binding activity , 1992, Virology.

[45]  G. Herrler,et al.  Bovine coronavirus uses N-acetyl-9-O-acetylneuraminic acid as a receptor determinant to initiate the infection of cultured cells. , 1992, The Journal of general virology.

[46]  H. Klenk,et al.  Structure and Function of the Hef Glycoprotein of Influenza C Virus , 1991, Advances in Virus Research.

[47]  C. Dieffenbach,et al.  Cloning of the mouse hepatitis virus (MHV) receptor: expression in human and hamster cell lines confers susceptibility to MHV , 1991, Journal of virology.

[48]  G. Herrler,et al.  The S protein of bovine coronavirus is a hemagglutinin recognizing 9-O-acetylated sialic acid as a receptor determinant , 1991, Journal of virology.

[49]  M. Lai,et al.  Heterogeneity of gene expression of the hemagglutinin-esterase (HE) protein of murine coronaviruses , 1991, Virology.

[50]  K. Holmes,et al.  Receptor for mouse hepatitis virus is a member of the carcinoembryonic antigen family of glycoproteins. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[51]  G. Herrler,et al.  High level transient expression of the murine coronavirus haemagglutinin-esterase. , 1991, The Journal of general virology.

[52]  J. D. den Boon,et al.  Another triple-spanning envelope protein among intracellularly budding RNA viruses: The torovirus E protein , 1991, Virology.

[53]  H. Klenk,et al.  Isolated HE-protein from hemagglutinating encephalomyelitis virus and bovine coronavirus has receptor-destroying and receptor-binding activity , 1991, Virology.

[54]  J. D. den Boon,et al.  Comparison of the genome organization of toro- and coronaviruses: Evidence for two nonhomologous RNA recombination events during berne virus evolution , 1991, Virology.

[55]  J. D. den Boon,et al.  Primary structure and post-translational processing of the berne virus peplomer protein☆ , 1990, Virology.

[56]  J. D. den Boon,et al.  The carboxyl-terminal part of the putative Berne virus polymerase is expressed by ribosomal frameshifting and contains sequence motifs which indicate that toro- and coronaviruses are evolutionarily related. , 1990, Nucleic acids research.

[57]  L. Babiuk,et al.  Expression and secretion of the bovine coronavirus hemagglutinin-esterase glycoprotein by insect cells infected with recombinant baculoviruses , 1990, Journal of virology.

[58]  M. Lai,et al.  Biosynthesis, structure, and biological activities of envelope protein gp65 of murine coronavirus , 1989, Virology.

[59]  M. Lai,et al.  Identification of a new transcriptional initiation site and the corresponding functional gene 2b in the murine coronavirus RNA genome , 1989, Journal of virology.

[60]  P. Talbot Hemagglutination by Murine Hepatitis Viruses , 1989, Intervirology.

[61]  P. Wagaman,et al.  Detection of influenza C virus by using an in situ esterase assay , 1989, Journal of clinical microbiology.

[62]  T. Muster,et al.  Influenza C virus esterase: analysis of catalytic site, inhibition, and possible function , 1989, Journal of virology.

[63]  L. Babiuk,et al.  Monoclonal antibodies to bovine coronavirus glycoproteins E2 and E3: demonstration of in vivo virus-neutralizing activity. , 1989, The Journal of general virology.

[64]  P. Palese,et al.  The E3 protein of bovine coronavirus is a receptor-destroying enzyme with acetylesterase activity , 1988, Journal of virology.

[65]  Marian C. Horzinek,et al.  Sequence of mouse hepatitis virus A59 mRNA 2: Indications for RNA recombination between coronaviruses and influenza C virus , 1988, Virology.

[66]  P. Palese,et al.  Human and bovine coronaviruses recognize sialic acid-containing receptors similar to those of influenza C viruses. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[67]  H. Meier-Ewert,et al.  Isolation of the influenza C virus glycoprotein in a soluble form by bromelain digestion. , 1988, Virus research.

[68]  H. Klenk,et al.  The glycoprotein of influenza C virus is the haemagglutinin, esterase and fusion factor. , 1988, The Journal of general virology.

[69]  L. Babiuk,et al.  Monoclonal antibodies to bovine coronavirus: Characteristics and topographical mapping of neutralizing epitopes on the E2 and E3 glycoproteins☆ , 1987, Virology.

[70]  L. Babiuk,et al.  Structural proteins of bovine coronavirus and their intracellular processing. , 1987, The Journal of general virology.

[71]  M. Nacht,et al.  The influenza C virus glycoprotein (HE) exhibits receptor-binding (hemagglutinin) and receptor-destroying (esterase) activities. , 1987, Virology.

[72]  J. Lenstra,et al.  Evidence for a coiled-coil structure in the spike proteins of coronaviruses☆ , 1987, Journal of Molecular Biology.

[73]  H. Klenk,et al.  The surface receptor is a major determinant of the cell tropism of influenza C virus. , 1987, Virology.

[74]  A. Varki,et al.  Selective inactivation of influenza C esterase: a probe for detecting 9-O-acetylated sialic acids. , 1987, Science.

[75]  F. Taguchi,et al.  Characterization of a variant virus isolated from neural cell culture after infection of mouse coronavirus JHMV , 1986, Virology.

[76]  B. Hogue,et al.  Structural proteins of human respiratory coronavirus OC43 , 1986, Virus Research.

[77]  H. Klenk,et al.  Influenza C virus uses 9-O-acetyl-N-acetylneuraminic acid as a high affinity receptor determinant for attachment to cells. , 1986, The Journal of biological chemistry.

[78]  D. Gilden,et al.  The organ tropism of mouse hepatitis virus A59 in mice is dependent on dose and route of inoculation. , 1986, Laboratory animal science.

[79]  H. Klenk,et al.  The receptor‐destroying enzyme of influenza C virus is neuraminate‐O‐acetylesterase. , 1985, The EMBO journal.

[80]  D. Brian,et al.  Bovine coronavirus hemagglutinin protein , 1985, Virus Research.

[81]  H. Klenk,et al.  Neuraminic acid is involved in the binding of influenza C virus to erythrocytes. , 1985, Virology.

[82]  S. Cusack,et al.  Low resolution structure of the influenza C glycoprotein determined by electron microscopy. , 1984, Journal of molecular biology.

[83]  R. P. Aaronson,et al.  Influenza C virus hemagglutinin: comparison with influenza A and B virus hemagglutinins , 1984, Journal of virology.

[84]  S. Siddell Coronavirus JHM: tryptic peptide fingerprinting of virion proteins and intracellular polypeptides. , 1982, The Journal of general virology.

[85]  M. Ohuchi,et al.  Demonstration of hemolytic and fusion activities of influenza C virus , 1982, Journal of virology.

[86]  D. Brian,et al.  Bovine coronavirus structural proteins , 1982, Journal of virology.

[87]  R. Compans,et al.  Isolation and structural analysis of influenza C virion glycoproteins. , 1981, Virology.

[88]  V. ter meulen,et al.  Coronavirus JHM: intracellular protein synthesis. , 1981, The Journal of general virology.

[89]  M. Pensaert,et al.  Characterization and isolation of structural polypeptides in haemagglutinating encephalomyelitis virus. , 1980, The Journal of general virology.

[90]  R. Compans,et al.  A precursor glycoprotein in influenza C virus. , 1979, Virology.

[91]  R. Compans,et al.  Structural components of influenza C virions , 1977, Journal of virology.

[92]  A. Kendal A comparison of "influenza C" with prototype myxoviruses: receptor-destroycing activity (neuraminidase) and structural polypeptides. , 1975, Virology.

[93]  G. K. Hirst RECEPTOR DESTRUCTION BY VIRUSES OF THE MUMPS-NDV-INFLUENZA GROUP , 1950, The Journal of experimental medicine.

[94]  G. K. Hirst THE RELATIONSHIP OF THE RECEPTORS OF A NEW STRAIN OF VIRUS TO THOSE OF THE MUMPS-NDV-INFLUENZA GROUP , 1950, The Journal of experimental medicine.

[95]  G. K. Hirst ADSORPTION OF INFLUENZA HEMAGGLUTININS AND VIRUS BY RED BLOOD CELLS , 1942, The Journal of experimental medicine.

[96]  G. K. Hirst THE AGGLUTINATION OF RED CELLS BY ALLANTOIC FLUID OF CHICK EMBRYOS INFECTED WITH INFLUENZA VIRUS. , 1941, Science.

[97]  K. Nerome,et al.  Absence of neuraminidase from influenza C virus , 2005, Archives of Virology.

[98]  F. Kitame,et al.  Proteolytic activation of hemolysis and fusion by influenza C virus , 2005, Archives of Virology.

[99]  E. Caul,et al.  Replication of an enteric bovine coronavirus in intestinal organ cultures , 2005, Archives of Virology.

[100]  P. Nuttall,et al.  Isolation of a coronavirus during studies on puffinosis, a disease of the Manx shearwater(Puffinus puffinus) , 2005, Archives of Virology.

[101]  R. Ishikawa,et al.  Structural polypeptides of the murine coronavirus DVIM , 2005, Archives of Virology.

[102]  K. Sugiyama,et al.  Morphological and biological properties of a new coronavirus associated with diarrhea in infant mice , 2005, Archives of Virology.

[103]  G. Herrler,et al.  Structural and functional analysis of the S proteins of two human coronavirus OC43 strains adapted to growth in different cells , 2005, Archives of Virology.

[104]  K. Sugiyama,et al.  Hemagglutination and structural polypeptides of a new coronavirus associated with diarrhea in infant mice , 2005, Archives of Virology.

[105]  B. Strobl,et al.  Recombinant viral sialate-O-acetylesterases , 2004, Glycoconjugate Journal.

[106]  A. Varki,et al.  Chemical diversity in the sialic acids and related alpha-keto acids: an evolutionary perspective. , 2002, Chemical reviews.

[107]  D. Cavanagh Nidovirales: a new order comprising Coronaviridae and Arteriviridae. , 1997, Archives of virology.

[108]  R. Lamb,et al.  Orthomyxoviridae: The Viruses and Their Replication. , 1996 .

[109]  D. Cavanagh The Coronavirus Surface Glycoprotein , 1995 .

[110]  B. Hogue,et al.  The Coronavirus Hemagglutinin Esterase Glycoprotein , 1995 .

[111]  B. Hogue,et al.  Synthesis and processing of the bovine enteric coronavirus haemagglutinin protein. , 1989, The Journal of general virology.

[112]  H. Klenk,et al.  Isolation and characterization of sialate 9(4)-O-acetylesterase from influenza C virus. , 1988, Biological chemistry Hoppe-Seyler.

[113]  F. Kitame,et al.  Isolation and characterization of influenza C virus inhibitor in rat serum. , 1985, Virus research.

[114]  R. Compans,et al.  Structure of the influenza C glycoprotein gene as determined from cloned DNA. , 1984, Virus research.

[115]  A. Gottschalk Neuraminidase: the specific enzyme of influenza virus and Vibrio cholerae. , 1957, Biochimica et biophysica acta.