Simple mathematical model of a rough fracture

A simple mathematical model of rough-walled fractures in rock is described which requires the specification of only three main parameters: the fractal dimension, the rms roughness at a reference length scale, and a length scale describing the degree of mismatch between the two fracture surfaces. Fractured samples, collected from natural joints and laboratory specimens, have been profiled to determine the range of these three parameters in nature. It is shown how this surface roughness model can be implemented on a computer, allowing future detailed study of the mechanical and transport properties of single fractures and the scale dependence of these properties.

[1]  T. N. Narasimhan,et al.  Aperture correlation of a fractal fracture , 1988 .

[2]  Stephen R. Brown,et al.  Hydromechanical response of a fracture undergoing compression and shear , 1993 .

[3]  J. B. Walsh,et al.  A new model for analyzing the effect of fractures on compressibility , 1979 .

[4]  N. Yoshioka,et al.  Elastic properties of contacting surfaces under normal and shear loads: 1. Theory , 1989 .

[5]  H. Spetzler,et al.  Topographic characteristics of laboratory induced shear fractures , 1993 .

[6]  R. Stesky Electrical conductivity of brine-saturated fractured rock , 1986 .

[7]  R. D. Mindlin Elastic Spheres in Contact Under Varying Oblique Forces , 1953 .

[8]  Stephen R. Brown,et al.  Roughness of natural fault surfaces , 1987 .

[9]  E. G. Thwaite,et al.  A noncontact laser system for measuring soil surface topography , 1988 .

[10]  Stephen R. Brown,et al.  closure of rock joints , 1986 .

[11]  David D. Nolte,et al.  Fluid percolation through single fractures , 1988 .

[12]  Terry E. Tullis,et al.  Euclidean and fractal models for the description of rock surface roughness , 1991 .

[13]  D. Whitehouse,et al.  The properties of random surfaces of significance in their contact , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[14]  Robert W. Zimmerman,et al.  The effect of contact area on the permeability of fractures , 1989 .

[15]  W. Brace Permeability of crystalline and argillaceous rocks , 1980 .

[16]  Stephen R. Brown A note on the description of surface roughness using fractal dimension , 1987 .

[17]  G. Swan,et al.  Prediction of shear behaviour of joints using profiles , 1985 .

[18]  Christopher H. Scholz,et al.  Elastic properties of contacting surfaces under normal and shear loads: 2. Comparison of theory with experiment , 1989 .

[19]  Stephen R. Brown,et al.  Correlation between the surfaces of natural rock joints , 1986 .

[20]  Stephen R. Brown Correction to “A note on the description of surface roughness using fractal dimension” , 1988 .

[21]  M. P. Chornack,et al.  Stratigraphic and structural characteristics of volcanic rocks in core hole USW G-4, Yucca Mountain, Nye County, Nevada , 1984 .

[22]  R. Sayles,et al.  Surface topography as a nonstationary random process , 1978, Nature.

[23]  N. Barton,et al.  The shear strength of rock joints in theory and practice , 1977 .

[24]  Stephen R. Brown,et al.  Transport of fluid and electric current through a single fracture , 1989 .

[25]  J. Greenwood,et al.  Contact of nominally flat surfaces , 1966, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[26]  Stephen R. Brown,et al.  Broad bandwidth study of the topography of natural rock surfaces , 1985 .

[27]  Terry Engelder,et al.  The permeability of whole and jointed Barre Granite , 1979 .

[28]  W. Power,et al.  The contact between opposing fault surfaces at Dixie Valley, Nevada, and implications for fault mechanics , 1992 .

[29]  J. B. Walsh,et al.  EFFECT OF PORE PRESSURE AND CONFINING PRESSURE ON FRACTURE PERMEABILITY , 1981 .

[30]  Raymond D. Mindlin,et al.  Compliance of elastic bodies in contact , 1949 .

[31]  D. Cruden,et al.  ESTIMATING JOINT ROUGHNESS COEFFICIENTS , 1979 .