Explicit formulas for LMI-based H2 filtering and deconvolution

This paper is concerned with the H"2-optimal estimation of a linear combination of the state and of the input of a discrete-time linear time-invariant dynamic system. We reformulate such problem in terms of a set of three linear matrix inequalities (LMI) and we provide explicit formulas to compute a family of solutions for such LMIs. This family is explicitly parameterized by a real parameter @e. The H"2 performance of the corresponding filter may be rendered arbitrarily close to the optimum by choosing a sufficiently small @e. This procedure is shown to be computationally very efficient.

[1]  S. Bittanti,et al.  An LMI approach to periodic discrete-time unbiased filtering , 2001 .

[2]  G. Picci,et al.  Zeros of Spectral Factors, the Geometry of Splitting Subspaces, and the Algebraic Riccati Inequality , 1995 .

[3]  B. Anderson,et al.  Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[4]  T. Kailath,et al.  H∞ filtering via convex optimization , 1997 .

[5]  Pramod P. Khargonekar,et al.  Mixed H2/H∞ filtering , 1996 .

[6]  Karolos M. Grigoriadis,et al.  Optimal unbiased filtering via linear matrix inequalities , 1998 .

[7]  T. Kailath,et al.  Indefinite-quadratic estimation and control: a unified approach to H 2 and H ∞ theories , 1999 .

[8]  Reinaldo M. Palhares,et al.  Robust filtering with guaranteed energy-to-peak performance - an LM1 approach , 2000, Autom..

[9]  FuMinyue,et al.  A linear matrix inequality approach to robust Hi filtering , 1997 .

[10]  Minyue Fu,et al.  A linear matrix inequality approach to robust H∞ filtering , 1997, IEEE Trans. Signal Process..

[11]  Karolos M. Grigoriadis,et al.  A unified algebraic approach to linear control design , 1998 .

[12]  Petros G. Voulgaris,et al.  On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..

[13]  A. T. Neto,et al.  H∞ and H2 design techniques for a class of prefilters , 1996, IEEE Trans. Autom. Control..

[14]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[15]  José Claudio Geromel,et al.  Optimal linear filtering under parameter uncertainty , 1999, IEEE Trans. Signal Process..

[16]  P. Gahinet,et al.  A linear matrix inequality approach to H∞ control , 1994 .