A unified framework for isotropic meshing based on narrow-band Euclidean distance transformation

In this paper, we propose a simple-yet-effective method for isotropic meshing relying on Euclidean distance transformation based centroidal Voronoi tessellation (CVT). Our approach improves the performance and robustness of computing CVT on curved domains while simultaneously providing high-quality output meshes. While conventional extrinsic methods compute CVTs in the entire volume bounded by the input model, we restrict the computation to a 3D shell of user-controlled thickness. Taking voxels which contain surface samples as sites, we compute the exact Euclidean distance transform on the GPU. Our algorithm is parallel and memory-efficient, and can construct the shell space for resolutions up to 20483 at interactive speed. The 3D centroidal Voronoi tessellation and restricted Voronoi diagrams are also computed efficiently on the GPU. Since the shell space can bridge holes and gaps smaller than a certain tolerance, and tolerate non-manifold edges and degenerate triangles, our algorithm can handle models with such defects, which typically cause conventional remeshing methods to fail. Our method can process implicit surfaces, polyhedral surfaces, and point clouds in a unified framework. Computational results show that our GPU-based isotropic meshing algorithm produces results comparable to state-of- the-art techniques, but is significantly faster than conventional CPU-based implementations.

[1]  Martin Isenburg,et al.  Isotropic surface remeshing , 2003, 2003 Shape Modeling International..

[2]  Ying He,et al.  Saddle vertex graph (SVG) , 2013, ACM Trans. Graph..

[3]  Tamal K. Dey,et al.  Tight cocone: a water-tight surface reconstructor , 2003, SM '03.

[4]  Dong-Ming Yan,et al.  Isotropic Remeshing with Fast and Exact Computation of Restricted Voronoi Diagram , 2009, Comput. Graph. Forum.

[5]  Yijie Han,et al.  Shortest paths on a polyhedron , 1990, SCG '90.

[6]  Charlie C. L. Wang,et al.  Robust mesh reconstruction from unoriented noisy points , 2009, Symposium on Solid and Physical Modeling.

[7]  Wenping Wang,et al.  Isotropic Surface Remeshing Using Constrained Centroidal Delaunay Mesh , 2012, Comput. Graph. Forum.

[8]  J A Sethian,et al.  Computing geodesic paths on manifolds. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Keenan Crane,et al.  Geodesics in heat: A new approach to computing distance based on heat flow , 2012, TOGS.

[10]  Kai Tang,et al.  Construction of Iso-Contours, Bisectors, and Voronoi Diagrams on Triangulated Surfaces , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Chenglei Yang,et al.  On centroidal voronoi tessellation—energy smoothness and fast computation , 2009, TOGS.

[12]  Kai Tang,et al.  The complexity of geodesic Voronoi diagrams on triangulated 2-manifold surfaces , 2013, Inf. Process. Lett..

[13]  Joseph S. B. Mitchell,et al.  The Discrete Geodesic Problem , 1987, SIAM J. Comput..

[14]  B. Lévy,et al.  L p Centroidal Voronoi Tessellation and its applications , 2010, SIGGRAPH 2010.

[15]  B. Lévy,et al.  Lp Centroidal Voronoi Tessellation and its applications , 2010, ACM Trans. Graph..

[16]  Sunghee Choi,et al.  A simple algorithm for homeomorphic surface reconstruction , 2000, SCG '00.

[17]  Wei Zeng,et al.  Surface Meshing with Curvature Convergence , 2014, IEEE Transactions on Visualization and Computer Graphics.

[18]  Jakob Andreas Bærentzen,et al.  3D distance fields: a survey of techniques and applications , 2006, IEEE Transactions on Visualization and Computer Graphics.

[19]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[20]  Liang Shuai,et al.  Centroidal Voronoi tessellation in universal covering space of manifold surfaces , 2011, Comput. Aided Geom. Des..

[21]  Lin Lu,et al.  Centroidal Voronoi Tessellation of Line Segments and Graphs , 2012, Comput. Graph. Forum.

[22]  Marshall W. Bern,et al.  A new Voronoi-based surface reconstruction algorithm , 1998, SIGGRAPH.

[23]  Liang Shuai,et al.  GPU-based computation of discrete periodic centroidal Voronoi tessellation in hyperbolic space , 2013, Comput. Aided Des..

[24]  Marcel Campen,et al.  Practical Anisotropic Geodesy , 2013, SGP '13.

[25]  Shi-Qing Xin,et al.  Parallel chen-han (PCH) algorithm for discrete geodesics , 2013, ACM Trans. Graph..

[26]  Tiow Seng Tan,et al.  Parallel Banding Algorithm to compute exact distance transform with the GPU , 2010, I3D '10.

[27]  Ligang Liu,et al.  Fast Wavefront Propagation (FWP) for Computing Exact Geodesic Distances on Meshes , 2015, IEEE Transactions on Visualization and Computer Graphics.

[28]  Charlie C. L. Wang,et al.  Solid modeling of polyhedral objects by Layered Depth-Normal Images on the GPU , 2010, Comput. Aided Des..

[29]  Stéphane Marchand-Maillet,et al.  Euclidean Ordering via Chamfer Distance Calculations , 1999, Comput. Vis. Image Underst..

[30]  Shi-Qing Xin,et al.  Intrinsic computation of centroidal Voronoi tessellation (CVT) on meshes , 2015, Comput. Aided Des..

[31]  Qiang Du,et al.  Constrained Centroidal Voronoi Tessellations for Surfaces , 2002, SIAM J. Sci. Comput..

[32]  Wenping Wang,et al.  GPU-Assisted Computation of Centroidal Voronoi Tessellation , 2011, IEEE Transactions on Visualization and Computer Graphics.

[33]  Dinesh Manocha,et al.  Fast computation of generalized Voronoi diagrams using graphics hardware , 1999, SIGGRAPH.

[34]  Bruno Lévy,et al.  Variational Anisotropic Surface Meshing with Voronoi Parallel Linear Enumeration , 2012, IMR.

[35]  Jinyan Li,et al.  Polyline‐sourced Geodesic Voronoi Diagrams on Triangle Meshes , 2014, Comput. Graph. Forum.

[36]  Mark W. Jones,et al.  Vector-City Vector Distance Transform , 2001, Comput. Vis. Image Underst..

[37]  Michael M. Kazhdan,et al.  Poisson surface reconstruction , 2006, SGP '06.

[38]  Dong-Ming Yan,et al.  Efficient computation of clipped Voronoi diagram for mesh generation , 2013, Comput. Aided Des..