Optimizing pyramid visibiliy coverage for autonomous robots in 3D environment

This paper studies the optimal visibility coverage for autonomous robots in complex 3D environments. The perception sensor equipped on an inspection robot usually has a pyramid shaped visible range with limited distance and angle. Finding the optimal pyramid visibility coverage for a given 3D region is NP hard; this paper presents an effective progressive integer linear programming algorithm to compute an approximate solution. Our framework allows the user to specify a coverage rate parameter to balance the percentage of visibility and the required guarding points for the given region. The algorithm is assessed in a simulated 3D pipeline environment and demonstrated promising for detecting leaks, clogs, and deformation of the pipes.

[1]  Jon Louis Bentley,et al.  Quad trees a data structure for retrieval on composite keys , 1974, Acta Informatica.

[2]  Joseph S. B. Mitchell,et al.  A constant-factor approximation algorithm for optimal terrain guarding , 2005, SODA '05.

[3]  Kaspar Althoefer,et al.  State of the art in sensor technologies for sewer inspection , 2002 .

[4]  Sariel Har-Peled,et al.  Guarding galleries and terrains , 2002, Inf. Process. Lett..

[5]  Hans-Dietrich Hecker,et al.  Two NP-Hard Art-Gallery Problems for Ortho-Polygons , 1995, Math. Log. Q..

[6]  J. Horn,et al.  Localization of a mobile robot by matching 3D-laser-range-images and predicted sensor images , 1994, Proceedings of the Intelligent Vehicles '94 Symposium.

[7]  Joseph O'Rourke,et al.  Some NP-hard polygon decomposition problems , 1983, IEEE Trans. Inf. Theory.

[8]  W. Yu,et al.  Computing 3D Shape Guarding and Star Decomposition , 2011, Comput. Graph. Forum.

[9]  Hermann Streich,et al.  Software approach for the autonomous inspection robot MAKRO , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[10]  J. Kahn,et al.  Traditional Galleries Require Fewer Watchmen , 1983 .

[11]  Antonis A. Argyros,et al.  Fast positioning of limited-visibility guards for the inspection of 2D workspaces , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[12]  Kenji Terabayashi,et al.  Construction of a compact range image sensor using multi-slit laser projector and obstacle detection of a humanoid with the sensor , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[13]  Hugues Hoppe,et al.  Progressive meshes , 1996, SIGGRAPH.

[14]  Amir Ali Forough Nassiraei,et al.  Concept and Design of A Fully Autonomous Sewer Pipe Inspection Mobile Robot "KANTARO" , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[15]  Jens T. Thielemann,et al.  Pipeline landmark detection for autonomous robot navigation using time-of-flight imagery , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[16]  Nicole Metje,et al.  Underground asset location and condition assessment technologies , 2007 .

[17]  Gokarna Sharma,et al.  FAMPER: A fully autonomous mobile robot for pipeline exploration , 2010, 2010 IEEE International Conference on Industrial Technology.

[18]  Xin Li,et al.  Symmetry and template guided completion of damaged skulls , 2011, Comput. Graph..

[19]  Xiao Lin,et al.  On Optimizing Autonomous Pipeline Inspection , 2012, IEEE Transactions on Robotics.

[20]  Jyh-Ming Lien,et al.  Eurographics Symposium on Point-based Graphics (2007) Approximate Star-shaped Decomposition of Point Set Data , 2022 .

[21]  Ying Wang,et al.  Vision-Based Grasping Using Mobile Robots and nonlinear Model Predictive Control , 2012, Control. Intell. Syst..

[22]  S. Sitharama Iyengar,et al.  Efficient 3D region guarding for multimedia data processing , 2011, 2011 IEEE International Conference on Multimedia and Expo.

[23]  Joachim Hertzberg,et al.  Landmark-based autonomous navigation in sewerage pipes , 1996, Proceedings of the First Euromicro Workshop on Advanced Mobile Robots (EUROBOT '96).

[24]  Michael J. Cree,et al.  A Clustering Based Denoising Technique for Range Images of Time of Flight Cameras , 2008, 2008 International Conference on Computational Intelligence for Modelling Control & Automation.

[25]  D. T. Lee,et al.  Computational complexity of art gallery problems , 1986, IEEE Trans. Inf. Theory.