Assembling the Tree of the Monocotyledons: Plastome Sequence Phylogeny and Evolution of Poales1

Abstract The order Poales comprises a substantial portion of plant life (7% of all angiosperms and 33% of monocots) and includes taxa of enormous economic and ecological significance. Molecular and morphological studies over the past two decades, however, leave uncertain many relationships within Poales and among allied commelinid orders. Here we present the results of an initial project by the Monocot AToL (Angiosperm Tree of Life) team on phylogeny and evolution in Poales, using sequence data for 81 plastid genes (exceeding 101 aligned kb) from 83 species of angiosperms. We recovered highly concordant relationships using maximum likelihood (ML) and maximum parsimony (MP), with 98.2% mean ML bootstrap support across monocots. For the first time, ML resolves ties among Poales and other commelinid orders with moderate to strong support. Analyses provide strong support for Bromeliaceae being sister to the rest of Poales; Typhaceae, Rapateaceae, and cyperids (sedges, rushes, and their allies) emerge next along the phylogenetic spine. Graminids (grasses and their allies) and restiids (Restionaceae and its allies) are well supported as sister taxa. MP identifies a xyrid clade (Eriocaulaceae, Mayacaceae, Xyridaceae) sister to cyperids, but ML (with much stronger support) places them as a grade with respect to restiids + graminids. The conflict in resolution between these analyses likely reflects long-branch attraction and highly elevated substitution rates in some Poales. All other familial relationships within the order are strongly supported by both MP and ML analyses. Character-state mapping implies that ancestral Poales lived in sunny, fire-prone, at least seasonally damp/wet, and possibly nutrient-poor sites, and were animal pollinated. Five subsequent shifts to wind pollination—in Typhaceae, cyperids, restiids, Ecdeiocoleaceae, and the vast PACCMAD-BEP clade of grasses—are significantly correlated with shifts to open habitats and small, inconspicuous, unisexual, and nectar-free flowers. Prime ecological movers driving the repeated evolution of wind pollination in Poales appear to include open habitats combined with the high local dominance of conspecific taxa, with the latter resulting from large-scale disturbances, combined with tall plant stature, vigorous vegetative spread, and positive ecological feedback. Reproductive assurance in the absence of reliable animal visitation probably favored wind pollination in annuals and short-statured perennials of Centrolepidaceae in ephemerally wet depressions and windswept alpine sites.

[1]  Č. Vlček,et al.  DNA variation within Juncaceae: comparison of impact of organelle regions on phylogeny , 2009, Plant Systematics and Evolution.

[2]  F. Bouman,et al.  Development of ovule and seed in Rapateaceae , 1988 .

[3]  M. Chase,et al.  Environmental energy and evolutionary rates in flowering plants , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[4]  J. Wiersema,et al.  Phylogeny and evolutionary patterns in Nymphaeales: integrating genes, genomes and morphology , 2008 .

[5]  W. Hahn,et al.  A molecular phylogenetic study of the Palmae (Arecaceae) based on atpB, rbcL, and 18S nrDNA sequences. , 2002, Systematic biology.

[6]  M. Chase Monocot relationships: an overview. , 2004, American journal of botany.

[7]  N. Pierce,et al.  Dating the origin of the Orchidaceae from a fossil orchid with its pollinator , 2007, Nature.

[8]  D. Hillis Inferring complex phytogenies , 1996, Nature.

[9]  K. Isono,et al.  Structural features of a wheat plastome as revealed by complete sequencing of chloroplast DNA , 2001, Zeitschrift für Induktive Abstammungs- und Vererbungslehre.

[10]  D. Sokoloff,et al.  Seed fertilization, development, and germination in Hydatellaceae (Nymphaeales): Implications for endosperm evolution in early angiosperms. , 2009, American journal of botany.

[11]  L. J. Davenport Monocots: Comparative Biology and Evolution (Excluding Poales) by J. T. Columbus, E. A. Friar, J. M. Porter, L. M. Prince, and M. G. Simpson , 2008 .

[12]  E. Kellogg,et al.  The Puelioideae, A New Subfamily of Poaceae , 2000 .

[13]  M. Chase,et al.  Large Trees, Supertrees, and Diversification of the Grass Family , 2007 .

[14]  S. Renner Floral biological observations onHeliamphora tatei (Sarraceniaceae) and other plants from Cerro de la Neblina in Venezuela , 1989, Plant Systematics and Evolution.

[15]  Hardeep,et al.  Robust Inference of Monocot Deep Phylogeny Using an Expanded Multigene Plastid Data Set , 2006 .

[16]  F. Cividanes,et al.  Polinização do dendezeiro por besouros no sul da Bahia , 2008 .

[17]  Stephen A. Smith,et al.  Phylogenetic analyses reveal the shady history of C4 grasses , 2010, Proceedings of the National Academy of Sciences.

[18]  R. Ricklefs,et al.  Dioecy and its correlates in the flowering plants , 1995 .

[19]  Masaki Shimamura,et al.  Transformation of poplar (Populus alba) plastids and expression of foreign proteins in tree chloroplasts , 2006, Transgenic Research.

[20]  A. Gove,et al.  Convergent evolution of an ant-plant mutualism across plant families, continents and time , 2007 .

[21]  D. Charlesworth Why are Unisexual Flowers Associated with Wind Pollination and Unspecialized Pollinators? , 1993, The American Naturalist.

[22]  H. Linder The Evolutionary History of the Poales/Restionales: A Hypothesis , 1987 .

[23]  S. Archibald African Grazing Lawns—How Fire, Rainfall, and Grazer Numbers Interact to Affect Grass Community States , 2008 .

[24]  James F. Smith Phylogenetic Hypotheses for the Monocotyledons Constructed from rbc L Sequence Data , 1993 .

[25]  M. Sugiura,et al.  The complete structure of the cucumber (Cucumis sativus L.) chloroplast genome: Its composition and comparative analysis , 2007, Cellular & Molecular Biology Letters.

[26]  C. Listabarth Insect-induced wind pollination of the palm Chamaedorea pinnatifrons and pollination in the related Wendlandiella sp. , 1993, Biodiversity & Conservation.

[27]  R. Gutell,et al.  Phylogenetic Analyses of Basal Angiosperms Based on Nine Plastid, Mitochondrial, and Nuclear Genes , 2005, International Journal of Plant Sciences.

[28]  E. Kellogg The Grasses: A Case Study in Macroevolution , 2000 .

[29]  T. Massingham,et al.  Experimental design criteria in phylogenetics: where to add taxa. , 2007, Systematic biology.

[30]  R. Jansen,et al.  Implications of the Plastid Genome Sequence of Typha (Typhaceae, Poales) for Understanding Genome Evolution in Poaceae , 2010, Journal of Molecular Evolution.

[31]  S. Weller,et al.  The evolution of wind pollination in angiosperms , 2002 .

[32]  J. Lundberg,et al.  An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants : APG II THE ANGIOSPERM PHYLOGENY GROUP * , 2003 .

[33]  Joseph T. Chang,et al.  Inconsistency of evolutionary tree topology reconstruction methods when substitution rates vary across characters. , 1996, Mathematical biosciences.

[34]  S. Graham,et al.  Phylogenetic relationships in the monocot order Commelinales, with a focus on Philydraceae , 2008 .

[35]  D. Maddison The discovery and importance of multiple islands of most , 1991 .

[36]  Orton,et al.  Inferring Complex Phylogenies Using Parsimony : An Empirical Approach Using Three Large DNA Data Sets for Angiosperms , 2003 .

[37]  D. Morrison,et al.  Monocots: Systematics and Evolution , 2000 .

[38]  V. Savolainen,et al.  Oligocene CO2 Decline Promoted C4 Photosynthesis in Grasses , 2008, Current Biology.

[39]  N. Blüthgen,et al.  Preferences for sugars and amino acids and their conditionality in a diverse nectar‐feeding ant community , 2004 .

[40]  R. Schmid,et al.  The Families and Genera of Vascular Plants. Vol. 1. Pteridophytes and Gymnosperms , 1991 .

[41]  H. Linder Morphology and the evolution of wind pollination , 1998 .

[42]  H. Linder,et al.  Testing the adaptive nature of radiation: growth form and life history divergence in the African grass genus Ehrharta (Poaceae: Ehrhartoideae). , 2004, American journal of botany.

[43]  N. Blüthgen,et al.  Sugar and amino acid composition of ant‐attended nectar and honeydew sources from an Australian rainforest , 2004 .

[44]  Jim Leebens-Mack,et al.  Identifying the basal angiosperm node in chloroplast genome phylogenies: sampling one's way out of the Felsenstein zone. , 2005, Molecular biology and evolution.

[45]  Elizabeth A. Kellogg,et al.  An ordinal classification for the families of flowering plants , 1998 .

[46]  V. L. Scatena,et al.  Pollination biology of Syngonanthus elegans (Eriocaulaceae - Poales) , 2009 .

[47]  James F. Smith Phylogenetics of seed plants : An analysis of nucleotide sequences from the plastid gene rbcL , 1993 .

[48]  W. Kress,et al.  Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB sequences , 2000 .

[49]  Alexandros Stamatakis,et al.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..

[50]  Thomas K. Newell A Study of the Genus Joinvillea (Flagellariaceae) , 1969, Journal of the Arnold Arboretum.

[51]  J. Craine Competition for Nutrients and Optimal Root Allocation , 2006, Plant and Soil.

[52]  M. Chase,et al.  Complete generic-level phylogenetic analyses of palms (Arecaceae) with comparisons of supertree and supermatrix approaches. , 2009, Systematic biology.

[53]  P. Rudall,et al.  Investigation of the Presence of Phenolic Compounds in Monocotyledonous Cell Walls, using UV Fluorescence Microscopy , 1994 .

[54]  James Leebens-Mack,et al.  Methods for obtaining and analyzing whole chloroplast genome sequences. , 2005, Methods in enzymology.

[55]  W. Kress,et al.  Repeated evolution of net venation and fleshy fruits among monocots in shaded habitats confirms a priori predictions: evidence from an ndhF phylogeny , 2005, Proceedings of the Royal Society B: Biological Sciences.

[56]  Wayne P. Maddison,et al.  Macclade: Analysis of Phylogeny and Character Evolution/Version 3 , 1992 .

[57]  T. Heard The role of stingless bees in crop pollination. , 1999, Annual review of entomology.

[58]  Jerrold I. Davis,et al.  Chloroplast DNA inversions and the origin of the grass family (Poaceae). , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[59]  C. Goodwillie,et al.  Wind pollination and reproductive assurance in Linanthus parviflorus (Polemoniaceae), a self-incompatible annual. , 1999, American journal of botany.

[60]  R. Jansen,et al.  The complete nucleotide sequence of the coffee (Coffea arabica L.) chloroplast genome: organization and implications for biotechnology and phylogenetic relationships amongst angiosperms. , 2007, Plant biotechnology journal.

[61]  T. Givnish,et al.  Ancient Vicariance or Recent Long‐Distance Dispersal? Inferences about Phylogeny and South American–African Disjunctions in Rapateaceae and Bromeliaceae Based on ndhF Sequence Data , 2004, International Journal of Plant Sciences.

[62]  P. Herendeen The fossil history of the monocotyledons , 1995 .

[63]  D. G. Lloyd,et al.  The avoidance of interference between the presentation of pollen and stigmas in angiosperms I. Dichogamy , 1986 .

[64]  S. Nilsson,et al.  Exine Sculpture in Pariana Pollen (Gramineae) , 1993 .

[65]  James F. Smith Molecular Evolution and Adaptive Radiation in Brocchinia (Bromeliaceae: Pitcairnioideae) Atop Tepuis of the Guayana Shield , 1997 .

[66]  M. Tamura,et al.  A Phylogenetic Analysis of the Plastid matK Gene with Emphasis on Melanthiaceae sensu lato , 2000 .

[67]  Timothy R. Seastedt,et al.  ECOLOGICAL CONSEQUENCES OF C4 GRASS INVASION OF A C4 GRASSLAND: A DILEMMA FOR MANAGEMENT , 2005 .

[68]  D. Tilman,et al.  Resource Use Patterns Predict Long‐Term Outcomes of Plant Competition for Nutrients and Light , 2007, The American Naturalist.

[69]  D. Soltis,et al.  Inferring complex phylogenies using parsimony: an empirical approach using three large DNA data sets for angiosperms. , 1998, Systematic biology.

[70]  P. Tomlinson The botany of mangroves , 1987 .

[71]  M. Duvall,et al.  The chloroplast genome of Anomochloa marantoidea (Anomochlooideae; Poaceae) comprises a mixture of grass-like and unique features. , 2010, American journal of botany.

[72]  Nico Blüthgen,et al.  Bottom‐up control and co‐occurrence in complex communities: honeydew and nectar determine a rainforest ant mosaic , 2004 .

[73]  J. Parnell,et al.  Reconstructing the Tree of Life Taxonomy and Systematics of Species Rich Taxa , 2006 .

[74]  M. Chase,et al.  Phylogenetic relationships within Orchidaceae based on a low-copy nuclear coding gene, Xdh: Congruence with organellar and nuclear ribosomal DNA results. , 2010, Molecular phylogenetics and evolution.

[75]  Aakrosh Ratan,et al.  Assembly algorithms for next-generation sequence data , 2009 .

[76]  Amit Dhingra,et al.  Rapid and accurate pyrosequencing of angiosperm plastid genomes , 2006, BMC Plant Biology.

[77]  J. Page A Scanning Electron Microscope Survey of Grass Pollen , 1978 .

[78]  Andrew J. Alverson,et al.  Phylogenetic analyses of Vitis (Vitaceae) based on complete chloroplast genome sequences: effects of taxon sampling and phylogenetic methods on resolving relationships among rosids , 2006, BMC Evolutionary Biology.

[79]  Erik Smets,et al.  Phylogeny of Cyperaceae Based on DNA Sequence Data: Current Progress and Future Prospects , 2009, The Botanical Review.

[80]  M. Fay Diversity, phylogeny, and evolution in the monocotyledons , 2011 .

[81]  B. G. Briggs,et al.  Hydatellaceae identified as a new branch near the base of the angiosperm phylogenetic tree , 2007, Nature.

[82]  E. Kellogg,et al.  Reinstatement and Emendation of Subfamily Micrairoideae (Poaceae) , 2007 .

[83]  J. Felsenstein Phylogenies and the Comparative Method , 1985, The American Naturalist.

[84]  B. G. Briggs,et al.  Ecdeiocoleaceae and Joinvilleaceae, sisters of Poaceae (Poales): evidence from rbcL and matK data , 2007 .

[85]  K. Bremer,et al.  The age of major monocot groups inferred from 800+ rbcL sequences , 2004 .

[86]  J. Huelsenbeck,et al.  SUCCESS OF PHYLOGENETIC METHODS IN THE FOUR-TAXON CASE , 1993 .

[87]  Daniel H. Janzen,et al.  Why Bamboos Wait So Long to Flower , 1976 .

[88]  B. Holland,et al.  Analysis of Acorus calamus chloroplast genome and its phylogenetic implications. , 2005, Molecular biology and evolution.

[89]  P. Dowding Wind Pollination Mechanisms and Aerobiology , 1987 .

[90]  Elizabeth A. Kellogg,et al.  Phylogeny of Poales , 1995 .

[91]  J. Columbus Monocots : comparative biology and evolution : poales , 2007 .

[92]  J. Trethewey,et al.  The distribution of ester-linked ferulic acid in the cell walls of angiosperms , 2010, Phytochemistry Reviews.

[93]  M. Donoghue,et al.  Rates of Molecular Evolution Are Linked to Life History in Flowering Plants , 2008, Science.

[94]  G. Igloi,et al.  Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing. , 1995, Journal of molecular biology.

[95]  Michael J. Sanderson,et al.  Molecular Evolution and Adaptive Radiation , 1998 .

[96]  Derrick J. Zwickl,et al.  Is sparse taxon sampling a problem for phylogenetic inference? , 2003, Systematic biology.

[97]  J. Tomkins,et al.  Complete chloroplast genome sequences of Hordeum vulgare, Sorghum bicolor and Agrostis stolonifera, and comparative analyses with other grass genomes , 2007, Theoretical and Applied Genetics.

[98]  CONTRASTING PATTERNS OF RADIATION IN AFRICAN AND AUSTRALIAN RESTIONACEAE , 2003, Evolution; international journal of organic evolution.

[99]  K. Shinozaki,et al.  The complete sequence of the rice (Oryza sativa) chloroplast genome: Intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals , 1989, Molecular and General Genetics MGG.

[100]  James Leebens-Mack,et al.  Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns , 2007, Proceedings of the National Academy of Sciences.

[101]  David C. Tank,et al.  An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: , 2009 .

[102]  J. Huelsenbeck The robustness of two phylogenetic methods: four-taxon simulations reveal a slight superiority of maximum likelihood over neighbor joining. , 1995, Molecular biology and evolution.

[103]  L. B. Johansen Phylogeny of Orchidantha (Lowiaceae) and the Zingiberales Based on Six DNA Regions , 2005 .

[104]  P. Lockhart,et al.  Deciphering ancient rapid radiations. , 2007, Trends in ecology & evolution.

[105]  Jerrold I. Davis,et al.  A Phylogeny of the Monocots, as Inferred from rbcL and atpA Sequence Variation, and a Comparison of Methods for Calculating Jackknife and Bootstrap Values , 2004 .

[106]  M T Clegg,et al.  Substitution rate comparisons between grasses and palms: synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[107]  S. Graham,et al.  Inference of phylogenetic relationships among the subfamilies of grasses (Poaceae: Poales) using meso-scale exemplar-based sampling of the plastid genome. , 2010 .

[108]  Antony V. Cox,et al.  Phylogenetics of the slipper orchids (Cypripedioideae, Orchidaceae): Nuclear rDNA ITS sequences , 1997, Plant Systematics and Evolution.

[109]  D. Lloyd Selection of Combined Versus Separate Sexes in Seed Plants , 1982, The American Naturalist.

[110]  Jerrold I. Davis,et al.  Phylogenetic relationships among Poaceae and related families as inferred from morphology, inversions in the plastid genome, and sequence data from the mitochondrial and plastid genomes. , 2003, American journal of botany.

[111]  Andrey V. Mardanov,et al.  Complete Sequence of the Duckweed (Lemna minor) Chloroplast Genome: Structural Organization and Phylogenetic Relationships to Other Angiosperms , 2008, Journal of Molecular Evolution.

[112]  P. Rudall,et al.  Evolutionary History of Poales , 2005 .

[113]  S. Pignatti,et al.  Centrolepidi‐Hydrocotyletea alatae, a new class of ephemeral communities in Western Australia* , 1994 .

[114]  U. Hamann Hydatellaceae — a new family of monocotyledoneae , 1976 .

[115]  Michelle E. Afkhami,et al.  A fungus among us: broad patterns of endophyte distribution in the grasses. , 2009, Ecology.

[116]  J. S. Rogers,et al.  Bias in phylogenetic estimation and its relevance to the choice between parsimony and likelihood methods. , 2001, Systematic biology.

[117]  H. Connor Evolution of Reproductive Systems in the Gramineae , 1981 .

[118]  M. Chase,et al.  Recircumscription of the monocotyledonous family Petrosaviaceae to include Japonolirion , 2003, Brittonia.

[119]  H. Daniell,et al.  Complete nucleotide sequence of Dendrocalamus latiflorus and Bambusa oldhamii chloroplast genomes. , 2009, Tree physiology.

[120]  Michael T. Clegg,et al.  Relative rates of nucleotide substitution at the rbcl locus of monocotyledonous plants , 1992, Journal of Molecular Evolution.

[121]  S. Barrett,et al.  A Phylogenetic Analysis of the Evolution of Wind Pollination in the Angiosperms , 2008, International Journal of Plant Sciences.

[122]  M. Duvall,et al.  The Complete Chloroplast Genome of Coix lacryma-jobi and a Comparative Molecular Evolutionary Analysis of Plastomes in Cereals , 2009, Journal of Molecular Evolution.

[123]  Ki-Joong Kim,et al.  Complete chloroplast genome sequences from Korean ginseng (Panax schinseng Nees) and comparative analysis of sequence evolution among 17 vascular plants. , 2004, DNA research : an international journal for rapid publication of reports on genes and genomes.

[124]  K. Bremer Early Cretaceous lineages of monocot flowering plants. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[125]  D. Sokoloff,et al.  Morphology and development of the gynoecium in Centrolepidaceae: The most remarkable range of variation in Poales. , 2009, American journal of botany.

[126]  E. L. Borba,et al.  Pollination in Brazilian Syngonanthus (Eriocaulaceae) species: evidence for entomophily instead of anemophily. , 2005, Annals of botany.

[127]  R. Cruden Pollen grains: Why so many? , 2000, Plant Systematics and Evolution.

[128]  V. L. Scatena,et al.  Floral anatomy of Paepalanthoideae (Eriocaulaceae, Poales) and their Nectariferous structures. , 2007, Annals of botany.

[129]  D. Soltis,et al.  Rosid radiation and the rapid rise of angiosperm-dominated forests , 2009, Proceedings of the National Academy of Sciences.

[130]  Robert K. Jansen,et al.  Automatic annotation of organellar genomes with DOGMA , 2004, Bioinform..

[131]  V. Goremykin,et al.  Analysis of the Amborella trichopoda chloroplast genome sequence suggests that amborella is not a basal angiosperm. , 2003, Molecular biology and evolution.

[132]  R. Hartley,et al.  Phenolic constituents of the cell walls of monocotyledons , 1980 .

[133]  Prof. Dr. Rolf M. T. Dahlgren,et al.  The Families of the Monocotyledons , 1985, Springer Berlin Heidelberg.

[134]  Michelle Waycott,et al.  Phylogenetic Studies in Alismatidae, II: Evolution of Marine Angiosperms (Seagrasses) and Hydrophily , 1997 .

[135]  Jerrold I. Davis,et al.  Phylogeny, Genome Size, and Chromosome Evolution of Asparagales , 2006 .

[136]  T. Givnish,et al.  ECOLOGICAL CONSTRAINTS ON THE EVOLUTION OF BREEDING SYSTEMS IN SEED PLANTS: DIOECY AND DISPERSAL IN GYMNOSPERMS , 1980, Evolution; international journal of organic evolution.

[137]  T. Soderstrom Some evolutionary trends in the Bambusoideae (Poaceae). , 1981 .

[138]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[139]  J. Wendel,et al.  A Phylogeny of the Grass Family (Poaceae) Based on ndhF Sequence Data , 1995 .

[140]  Mark W. Chase,et al.  Evolution of the angiosperms: calibrating the family tree , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[141]  A. Ruiz,et al.  Floral scent of Eleocharis elegans (Kunth) Roem. & Schult. (Cyperaceae) , 2005 .

[142]  H. Clifford,et al.  The monocotyledons: a comparative study. , 1982 .

[143]  S. Wölfl,et al.  The chloroplast genome of the “basal” angiosperm Calycanthus fertilis – structural and phylogenetic analyses , 2003, Plant Systematics and Evolution.

[144]  W. Zomlefer,et al.  Advances in angiosperm systematics: examples from the Liliales and Asparagales1 , 1999 .

[145]  Jerrold I. Davis,et al.  Phylogenetics and character evolution in the grass family (Poaceae): Simultaneous analysis of morphological and Chloroplast DNA restriction site character sets , 2008, The Botanical Review.

[146]  M. Hasebe,et al.  Biosystematic studies on the family Tofieldiaceae I. Phylogeny and circumscription of the family inferred from DNA sequences of matK and rbcL. , 2004, Plant biology.

[147]  A. Graybeal,et al.  Is it better to add taxa or characters to a difficult phylogenetic problem? , 1998, Systematic biology.

[148]  E. M. Friis,et al.  Araceae from the Early Cretaceous of Portugal: evidence on the emergence of monocotyledons. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[149]  The Monocotyledons: A Comparative Study. , 1983 .

[150]  Sudhindra R Gadagkar,et al.  Maximum likelihood outperforms maximum parsimony even when evolutionary rates are heterotachous. , 2005, Molecular biology and evolution.

[151]  K. Kubitzki,et al.  Flowering Plants. Monocotyledons: Alismatanae and Commelinanae (except Gramineae) , 1998 .

[152]  D. Wedin Species, Nitrogen, and Grassland Dynamics: The Constraints of Stuff , 1995 .

[153]  W. Kress,et al.  Unraveling the evolutionary radiation of the families of the Zingiberales using morphological and molecular evidence. , 2001, Systematic biology.

[154]  T. Wetter,et al.  Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs. , 2004, Genome research.

[155]  R. Cruden POLLEN‐OVULE RATIOS: A CONSERVATIVE INDICATOR OF BREEDING SYSTEMS IN FLOWERING PLANTS , 1977, Evolution; international journal of organic evolution.

[156]  V. L. Scatena,et al.  Floral anatomy of Eriocaulon elichrysoides and Syngonanthus caulescens (Eriocaulaceae) , 2003 .

[157]  D. Soltis,et al.  Amborella not a "basal angiosperm"? Not so fast. , 2004, American journal of botany.

[158]  P. Rudall The Nucellus and Chalaza in monocotyledons: Structure and systematics , 1997, The Botanical Review.

[159]  D. Hillis Inferring complex phylogenies. , 1996, Nature.

[160]  Chung-Yen Lin,et al.  The chloroplast genome of Phalaenopsis aphrodite (Orchidaceae): comparative analysis of evolutionary rate with that of grasses and its phylogenetic implications. , 2006, Molecular biology and evolution.

[161]  M. Chase,et al.  Large multi-gene phylogenetic trees of the grasses (Poaceae): progress towards complete tribal and generic level sampling. , 2008, Molecular phylogenetics and evolution.

[162]  B. G. Briggs,et al.  A new subfamilial and tribal classification of Restionaceae (Poales) , 2009 .

[163]  Linda A. Raubeson,et al.  Comparative chloroplast genomics: analyses including new sequences from the angiosperms Nuphar advena and Ranunculus macranthus , 2007, BMC Genomics.

[164]  T. Givnish,et al.  Consistency, characters, and the likelihood of correct phylogenetic inference. , 1997, Molecular phylogenetics and evolution.

[165]  J. Leebens-Mack,et al.  Complete plastid genome sequences of Drimys, Liriodendron, and Piper: implications for the phylogenetic relationships of magnoliids , 2006, BMC Evolutionary Biology.

[166]  M. Chase,et al.  Phylogenetic relationships in Cyperaceae subfamily Mapanioideae inferred from pollen and plastid DNA sequence data. , 2003, American journal of botany.

[167]  D. Whitehead CHAPTER 5 – Wind Pollination: Some Ecological and Evolutionary Perspectives , 1983 .

[168]  R. Mache,et al.  The plastid chromosome of spinach (Spinacia oleracea): complete nucleotide sequence and gene organization , 2001, Plant Molecular Biology.

[169]  A. Henderson Monocotyledons: Systematics and evolution. 2 vols. Edited by Paula Rudall, Phillip Cribb, David Cutler & Christopher Humphries. , 1996, Brittonia.

[170]  J. Briggs,et al.  Controls of nitrogen limitation in tallgrass prairie , 1991, Oecologia.

[171]  W. Sakamoto,et al.  The model plant Medicago truncatula exhibits biparental plastid inheritance. , 2008, Plant & cell physiology.

[172]  M. Pagel,et al.  Bayesian Analysis of Correlated Evolution of Discrete Characters by Reversible‐Jump Markov Chain Monte Carlo , 2006, The American Naturalist.

[173]  T. Soderstrom,et al.  Insect Pollination in Tropical Rain Forest Grasses , 1971 .

[174]  P. Berry,et al.  WIND POLLINATION, SELF‐INCOMPATIBILITY, AND ALTITUDINAL SHIFTS IN POLLINATION SYSTEMS IN THE HIGH ANDEAN GENUS ESPELETIA (ASTERACEAE) , 1989 .

[175]  T. Soderstrom,et al.  A Commentary on the Bamboos (Poaceae: Bambusoideae) , 1979 .

[176]  T. Givnish,et al.  PHYLOGENY, ADAPTIVE RADIATION, AND HISTORICAL BIOGEOGRAPHY OF BROMELIACEAE INFERRED FROM ndhF SEQUENCE DATA , 2007 .

[177]  Dennis W. Stevenson,et al.  Monocot systematics: a combined analysis , 1995 .

[178]  Andrew Henderson,et al.  A review of pollination studies in the Palmae , 1986, The Botanical Review.

[179]  J. Blair FIRE, N AVAILABILITY, AND PLANT RESPONSE IN GRASSLANDS: A TEST OF THE TRANSIENT MAXIMA HYPOTHESIS , 1997 .

[180]  Knut Faegri,et al.  The principles of pollination ecology , 1967 .

[181]  K. Cameron Utility of plastid psaB gene sequences for investigating intrafamilial relationships within Orchidaceae. , 2004, Molecular phylogenetics and evolution.

[182]  P. Green,et al.  Consed: a graphical tool for sequence finishing. , 1998, Genome research.

[183]  Takayuki Asano,et al.  Complete nucleotide sequence of the sugarcane (Saccharum officinarum) chloroplast genome: a comparative analysis of four monocot chloroplast genomes. , 2004, DNA research : an international journal for rapid publication of reports on genes and genomes.

[184]  S. Weller,et al.  Dioecy and the evolution of pollination systems inSchiedea and Alsinidendron (Caryophyllaceae:Alsinoideae) in the Hawaiian Islands. , 1998, American journal of botany.

[185]  S. Wölfl,et al.  The chloroplast genome of Nymphaea alba: whole-genome analyses and the problem of identifying the most basal angiosperm. , 2004, Molecular biology and evolution.

[186]  P. Regal POLLINATION BY WIND AND ANIMALS: Ecology of Geographic Patterns , 1982 .

[187]  V. Savolainen,et al.  Report Oligocene CO 2 Decline Promoted C 4 Photosynthesis in Grasses , 2008 .

[188]  Ziheng Yang Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: Approximate methods , 1994, Journal of Molecular Evolution.

[189]  R. Jansen,et al.  Phylogenetic and evolutionary implications of complete chloroplast genome sequences of four early-diverging angiosperms: Buxus (Buxaceae), Chloranthus (Chloranthaceae), Dioscorea (Dioscoreaceae), and Illicium (Schisandraceae). , 2007, Molecular phylogenetics and evolution.

[190]  G. Jordan,et al.  Early Eocene Ripogonum (Liliales: Ripogonaceae) leaf macrofossils from southern Australia , 2009 .

[191]  H. Philippe,et al.  Suppression of long-branch attraction artefacts in the animal phylogeny using a site-heterogeneous model , 2007, BMC Evolutionary Biology.

[192]  S. Barrett,et al.  Wind of change: new insights on the ecology and evolution of pollination and mating in wind-pollinated plants. , 2009, Annals of botany.

[193]  Jerrold I. Davis,et al.  Phylogeny and subfamilial classification of the grasses (Poaceae) , 2001 .

[194]  K. Bremer GONDWANAN EVOLUTION OF THE GRASS ALLIANCE OF FAMILIES (POALES) , 2002, Evolution; international journal of organic evolution.

[195]  G. Learn,et al.  Phylogenetic analysis of rbcL sequences identifies Acorus calamus as the primal extant monocotyledon. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[196]  P. Cox Abiotic pollination: an evolutionary escape for animal-pollinated angiosperms , 1991 .