Assembling the Tree of the Monocotyledons: Plastome Sequence Phylogeny and Evolution of Poales1
暂无分享,去创建一个
Dennis W. Stevenson | Claude W. dePamphilis | Douglas E. Soltis | Pamela S. Soltis | Thomas J. Givnish | J. Chris Pires | Michael R. McKain | Melvin R. Duvall | Michael J. Moore | James H. Leebens-Mack | B. G. Briggs | D. Soltis | J. Leebens-Mack | P. Soltis | C. dePamphilis | D. Stevenson | S. Graham | J. Pires | T. Givnish | W. Zomlefer | M. McKain | K. Thiele | M. Ames | J. Heaney | J. McNeal | Kevin Thiele | M. Moore | Sean W. Graham | Joel R. McNeal | M. Duvall | Mercedes Ames | P. Roxanne Steele | Wendy B. Zomlefer | Barbara G. Briggs | J. Michael Heaney | P. Steele | Jim Leebens-Mack | Michael J. Moore | Dennis Wm. Stevenson | Sean W. Graham | J. Chris Pires | Barbara G. Briggs | J. Michael Heaney | J. Mcneal | J. C. Pires | J. M. Heaney
[1] Č. Vlček,et al. DNA variation within Juncaceae: comparison of impact of organelle regions on phylogeny , 2009, Plant Systematics and Evolution.
[2] F. Bouman,et al. Development of ovule and seed in Rapateaceae , 1988 .
[3] M. Chase,et al. Environmental energy and evolutionary rates in flowering plants , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.
[4] J. Wiersema,et al. Phylogeny and evolutionary patterns in Nymphaeales: integrating genes, genomes and morphology , 2008 .
[5] W. Hahn,et al. A molecular phylogenetic study of the Palmae (Arecaceae) based on atpB, rbcL, and 18S nrDNA sequences. , 2002, Systematic biology.
[6] M. Chase. Monocot relationships: an overview. , 2004, American journal of botany.
[7] N. Pierce,et al. Dating the origin of the Orchidaceae from a fossil orchid with its pollinator , 2007, Nature.
[8] D. Hillis. Inferring complex phytogenies , 1996, Nature.
[9] K. Isono,et al. Structural features of a wheat plastome as revealed by complete sequencing of chloroplast DNA , 2001, Zeitschrift für Induktive Abstammungs- und Vererbungslehre.
[10] D. Sokoloff,et al. Seed fertilization, development, and germination in Hydatellaceae (Nymphaeales): Implications for endosperm evolution in early angiosperms. , 2009, American journal of botany.
[11] L. J. Davenport. Monocots: Comparative Biology and Evolution (Excluding Poales) by J. T. Columbus, E. A. Friar, J. M. Porter, L. M. Prince, and M. G. Simpson , 2008 .
[12] E. Kellogg,et al. The Puelioideae, A New Subfamily of Poaceae , 2000 .
[13] M. Chase,et al. Large Trees, Supertrees, and Diversification of the Grass Family , 2007 .
[14] S. Renner. Floral biological observations onHeliamphora tatei (Sarraceniaceae) and other plants from Cerro de la Neblina in Venezuela , 1989, Plant Systematics and Evolution.
[15] Hardeep,et al. Robust Inference of Monocot Deep Phylogeny Using an Expanded Multigene Plastid Data Set , 2006 .
[16] F. Cividanes,et al. Polinização do dendezeiro por besouros no sul da Bahia , 2008 .
[17] Stephen A. Smith,et al. Phylogenetic analyses reveal the shady history of C4 grasses , 2010, Proceedings of the National Academy of Sciences.
[18] R. Ricklefs,et al. Dioecy and its correlates in the flowering plants , 1995 .
[19] Masaki Shimamura,et al. Transformation of poplar (Populus alba) plastids and expression of foreign proteins in tree chloroplasts , 2006, Transgenic Research.
[20] A. Gove,et al. Convergent evolution of an ant-plant mutualism across plant families, continents and time , 2007 .
[21] D. Charlesworth. Why are Unisexual Flowers Associated with Wind Pollination and Unspecialized Pollinators? , 1993, The American Naturalist.
[22] H. Linder. The Evolutionary History of the Poales/Restionales: A Hypothesis , 1987 .
[23] S. Archibald. African Grazing Lawns—How Fire, Rainfall, and Grazer Numbers Interact to Affect Grass Community States , 2008 .
[24] James F. Smith. Phylogenetic Hypotheses for the Monocotyledons Constructed from rbc L Sequence Data , 1993 .
[25] M. Sugiura,et al. The complete structure of the cucumber (Cucumis sativus L.) chloroplast genome: Its composition and comparative analysis , 2007, Cellular & Molecular Biology Letters.
[26] C. Listabarth. Insect-induced wind pollination of the palm Chamaedorea pinnatifrons and pollination in the related Wendlandiella sp. , 1993, Biodiversity & Conservation.
[27] R. Gutell,et al. Phylogenetic Analyses of Basal Angiosperms Based on Nine Plastid, Mitochondrial, and Nuclear Genes , 2005, International Journal of Plant Sciences.
[28] E. Kellogg. The Grasses: A Case Study in Macroevolution , 2000 .
[29] T. Massingham,et al. Experimental design criteria in phylogenetics: where to add taxa. , 2007, Systematic biology.
[30] R. Jansen,et al. Implications of the Plastid Genome Sequence of Typha (Typhaceae, Poales) for Understanding Genome Evolution in Poaceae , 2010, Journal of Molecular Evolution.
[31] S. Weller,et al. The evolution of wind pollination in angiosperms , 2002 .
[32] J. Lundberg,et al. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants : APG II THE ANGIOSPERM PHYLOGENY GROUP * , 2003 .
[33] Joseph T. Chang,et al. Inconsistency of evolutionary tree topology reconstruction methods when substitution rates vary across characters. , 1996, Mathematical biosciences.
[34] S. Graham,et al. Phylogenetic relationships in the monocot order Commelinales, with a focus on Philydraceae , 2008 .
[35] D. Maddison. The discovery and importance of multiple islands of most , 1991 .
[36] Orton,et al. Inferring Complex Phylogenies Using Parsimony : An Empirical Approach Using Three Large DNA Data Sets for Angiosperms , 2003 .
[37] D. Morrison,et al. Monocots: Systematics and Evolution , 2000 .
[38] V. Savolainen,et al. Oligocene CO2 Decline Promoted C4 Photosynthesis in Grasses , 2008, Current Biology.
[39] N. Blüthgen,et al. Preferences for sugars and amino acids and their conditionality in a diverse nectar‐feeding ant community , 2004 .
[40] R. Schmid,et al. The Families and Genera of Vascular Plants. Vol. 1. Pteridophytes and Gymnosperms , 1991 .
[41] H. Linder. Morphology and the evolution of wind pollination , 1998 .
[42] H. Linder,et al. Testing the adaptive nature of radiation: growth form and life history divergence in the African grass genus Ehrharta (Poaceae: Ehrhartoideae). , 2004, American journal of botany.
[43] N. Blüthgen,et al. Sugar and amino acid composition of ant‐attended nectar and honeydew sources from an Australian rainforest , 2004 .
[44] Jim Leebens-Mack,et al. Identifying the basal angiosperm node in chloroplast genome phylogenies: sampling one's way out of the Felsenstein zone. , 2005, Molecular biology and evolution.
[45] Elizabeth A. Kellogg,et al. An ordinal classification for the families of flowering plants , 1998 .
[46] V. L. Scatena,et al. Pollination biology of Syngonanthus elegans (Eriocaulaceae - Poales) , 2009 .
[47] James F. Smith. Phylogenetics of seed plants : An analysis of nucleotide sequences from the plastid gene rbcL , 1993 .
[48] W. Kress,et al. Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB sequences , 2000 .
[49] Alexandros Stamatakis,et al. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..
[50] Thomas K. Newell. A Study of the Genus Joinvillea (Flagellariaceae) , 1969, Journal of the Arnold Arboretum.
[51] J. Craine. Competition for Nutrients and Optimal Root Allocation , 2006, Plant and Soil.
[52] M. Chase,et al. Complete generic-level phylogenetic analyses of palms (Arecaceae) with comparisons of supertree and supermatrix approaches. , 2009, Systematic biology.
[53] P. Rudall,et al. Investigation of the Presence of Phenolic Compounds in Monocotyledonous Cell Walls, using UV Fluorescence Microscopy , 1994 .
[54] James Leebens-Mack,et al. Methods for obtaining and analyzing whole chloroplast genome sequences. , 2005, Methods in enzymology.
[55] W. Kress,et al. Repeated evolution of net venation and fleshy fruits among monocots in shaded habitats confirms a priori predictions: evidence from an ndhF phylogeny , 2005, Proceedings of the Royal Society B: Biological Sciences.
[56] Wayne P. Maddison,et al. Macclade: Analysis of Phylogeny and Character Evolution/Version 3 , 1992 .
[57] T. Heard. The role of stingless bees in crop pollination. , 1999, Annual review of entomology.
[58] Jerrold I. Davis,et al. Chloroplast DNA inversions and the origin of the grass family (Poaceae). , 1992, Proceedings of the National Academy of Sciences of the United States of America.
[59] C. Goodwillie,et al. Wind pollination and reproductive assurance in Linanthus parviflorus (Polemoniaceae), a self-incompatible annual. , 1999, American journal of botany.
[60] R. Jansen,et al. The complete nucleotide sequence of the coffee (Coffea arabica L.) chloroplast genome: organization and implications for biotechnology and phylogenetic relationships amongst angiosperms. , 2007, Plant biotechnology journal.
[61] T. Givnish,et al. Ancient Vicariance or Recent Long‐Distance Dispersal? Inferences about Phylogeny and South American–African Disjunctions in Rapateaceae and Bromeliaceae Based on ndhF Sequence Data , 2004, International Journal of Plant Sciences.
[62] P. Herendeen. The fossil history of the monocotyledons , 1995 .
[63] D. G. Lloyd,et al. The avoidance of interference between the presentation of pollen and stigmas in angiosperms I. Dichogamy , 1986 .
[64] S. Nilsson,et al. Exine Sculpture in Pariana Pollen (Gramineae) , 1993 .
[65] James F. Smith. Molecular Evolution and Adaptive Radiation in Brocchinia (Bromeliaceae: Pitcairnioideae) Atop Tepuis of the Guayana Shield , 1997 .
[66] M. Tamura,et al. A Phylogenetic Analysis of the Plastid matK Gene with Emphasis on Melanthiaceae sensu lato , 2000 .
[67] Timothy R. Seastedt,et al. ECOLOGICAL CONSEQUENCES OF C4 GRASS INVASION OF A C4 GRASSLAND: A DILEMMA FOR MANAGEMENT , 2005 .
[68] D. Tilman,et al. Resource Use Patterns Predict Long‐Term Outcomes of Plant Competition for Nutrients and Light , 2007, The American Naturalist.
[69] D. Soltis,et al. Inferring complex phylogenies using parsimony: an empirical approach using three large DNA data sets for angiosperms. , 1998, Systematic biology.
[70] P. Tomlinson. The botany of mangroves , 1987 .
[71] M. Duvall,et al. The chloroplast genome of Anomochloa marantoidea (Anomochlooideae; Poaceae) comprises a mixture of grass-like and unique features. , 2010, American journal of botany.
[72] Nico Blüthgen,et al. Bottom‐up control and co‐occurrence in complex communities: honeydew and nectar determine a rainforest ant mosaic , 2004 .
[73] J. Parnell,et al. Reconstructing the Tree of Life Taxonomy and Systematics of Species Rich Taxa , 2006 .
[74] M. Chase,et al. Phylogenetic relationships within Orchidaceae based on a low-copy nuclear coding gene, Xdh: Congruence with organellar and nuclear ribosomal DNA results. , 2010, Molecular phylogenetics and evolution.
[75] Aakrosh Ratan,et al. Assembly algorithms for next-generation sequence data , 2009 .
[76] Amit Dhingra,et al. Rapid and accurate pyrosequencing of angiosperm plastid genomes , 2006, BMC Plant Biology.
[77] J. Page. A Scanning Electron Microscope Survey of Grass Pollen , 1978 .
[78] Andrew J. Alverson,et al. Phylogenetic analyses of Vitis (Vitaceae) based on complete chloroplast genome sequences: effects of taxon sampling and phylogenetic methods on resolving relationships among rosids , 2006, BMC Evolutionary Biology.
[79] Erik Smets,et al. Phylogeny of Cyperaceae Based on DNA Sequence Data: Current Progress and Future Prospects , 2009, The Botanical Review.
[80] M. Fay. Diversity, phylogeny, and evolution in the monocotyledons , 2011 .
[81] B. G. Briggs,et al. Hydatellaceae identified as a new branch near the base of the angiosperm phylogenetic tree , 2007, Nature.
[82] E. Kellogg,et al. Reinstatement and Emendation of Subfamily Micrairoideae (Poaceae) , 2007 .
[83] J. Felsenstein. Phylogenies and the Comparative Method , 1985, The American Naturalist.
[84] B. G. Briggs,et al. Ecdeiocoleaceae and Joinvilleaceae, sisters of Poaceae (Poales): evidence from rbcL and matK data , 2007 .
[85] K. Bremer,et al. The age of major monocot groups inferred from 800+ rbcL sequences , 2004 .
[86] J. Huelsenbeck,et al. SUCCESS OF PHYLOGENETIC METHODS IN THE FOUR-TAXON CASE , 1993 .
[87] Daniel H. Janzen,et al. Why Bamboos Wait So Long to Flower , 1976 .
[88] B. Holland,et al. Analysis of Acorus calamus chloroplast genome and its phylogenetic implications. , 2005, Molecular biology and evolution.
[89] P. Dowding. Wind Pollination Mechanisms and Aerobiology , 1987 .
[90] Elizabeth A. Kellogg,et al. Phylogeny of Poales , 1995 .
[91] J. Columbus. Monocots : comparative biology and evolution : poales , 2007 .
[92] J. Trethewey,et al. The distribution of ester-linked ferulic acid in the cell walls of angiosperms , 2010, Phytochemistry Reviews.
[93] M. Donoghue,et al. Rates of Molecular Evolution Are Linked to Life History in Flowering Plants , 2008, Science.
[94] G. Igloi,et al. Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing. , 1995, Journal of molecular biology.
[95] Michael J. Sanderson,et al. Molecular Evolution and Adaptive Radiation , 1998 .
[96] Derrick J. Zwickl,et al. Is sparse taxon sampling a problem for phylogenetic inference? , 2003, Systematic biology.
[97] J. Tomkins,et al. Complete chloroplast genome sequences of Hordeum vulgare, Sorghum bicolor and Agrostis stolonifera, and comparative analyses with other grass genomes , 2007, Theoretical and Applied Genetics.
[98] CONTRASTING PATTERNS OF RADIATION IN AFRICAN AND AUSTRALIAN RESTIONACEAE , 2003, Evolution; international journal of organic evolution.
[99] K. Shinozaki,et al. The complete sequence of the rice (Oryza sativa) chloroplast genome: Intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals , 1989, Molecular and General Genetics MGG.
[100] James Leebens-Mack,et al. Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns , 2007, Proceedings of the National Academy of Sciences.
[101] David C. Tank,et al. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: , 2009 .
[102] J. Huelsenbeck. The robustness of two phylogenetic methods: four-taxon simulations reveal a slight superiority of maximum likelihood over neighbor joining. , 1995, Molecular biology and evolution.
[103] L. B. Johansen. Phylogeny of Orchidantha (Lowiaceae) and the Zingiberales Based on Six DNA Regions , 2005 .
[104] P. Lockhart,et al. Deciphering ancient rapid radiations. , 2007, Trends in ecology & evolution.
[105] Jerrold I. Davis,et al. A Phylogeny of the Monocots, as Inferred from rbcL and atpA Sequence Variation, and a Comparison of Methods for Calculating Jackknife and Bootstrap Values , 2004 .
[106] M T Clegg,et al. Substitution rate comparisons between grasses and palms: synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. , 1996, Proceedings of the National Academy of Sciences of the United States of America.
[107] S. Graham,et al. Inference of phylogenetic relationships among the subfamilies of grasses (Poaceae: Poales) using meso-scale exemplar-based sampling of the plastid genome. , 2010 .
[108] Antony V. Cox,et al. Phylogenetics of the slipper orchids (Cypripedioideae, Orchidaceae): Nuclear rDNA ITS sequences , 1997, Plant Systematics and Evolution.
[109] D. Lloyd. Selection of Combined Versus Separate Sexes in Seed Plants , 1982, The American Naturalist.
[110] Jerrold I. Davis,et al. Phylogenetic relationships among Poaceae and related families as inferred from morphology, inversions in the plastid genome, and sequence data from the mitochondrial and plastid genomes. , 2003, American journal of botany.
[111] Andrey V. Mardanov,et al. Complete Sequence of the Duckweed (Lemna minor) Chloroplast Genome: Structural Organization and Phylogenetic Relationships to Other Angiosperms , 2008, Journal of Molecular Evolution.
[112] P. Rudall,et al. Evolutionary History of Poales , 2005 .
[113] S. Pignatti,et al. Centrolepidi‐Hydrocotyletea alatae, a new class of ephemeral communities in Western Australia* , 1994 .
[114] U. Hamann. Hydatellaceae — a new family of monocotyledoneae , 1976 .
[115] Michelle E. Afkhami,et al. A fungus among us: broad patterns of endophyte distribution in the grasses. , 2009, Ecology.
[116] J. S. Rogers,et al. Bias in phylogenetic estimation and its relevance to the choice between parsimony and likelihood methods. , 2001, Systematic biology.
[117] H. Connor. Evolution of Reproductive Systems in the Gramineae , 1981 .
[118] M. Chase,et al. Recircumscription of the monocotyledonous family Petrosaviaceae to include Japonolirion , 2003, Brittonia.
[119] H. Daniell,et al. Complete nucleotide sequence of Dendrocalamus latiflorus and Bambusa oldhamii chloroplast genomes. , 2009, Tree physiology.
[120] Michael T. Clegg,et al. Relative rates of nucleotide substitution at the rbcl locus of monocotyledonous plants , 1992, Journal of Molecular Evolution.
[121] S. Barrett,et al. A Phylogenetic Analysis of the Evolution of Wind Pollination in the Angiosperms , 2008, International Journal of Plant Sciences.
[122] M. Duvall,et al. The Complete Chloroplast Genome of Coix lacryma-jobi and a Comparative Molecular Evolutionary Analysis of Plastomes in Cereals , 2009, Journal of Molecular Evolution.
[123] Ki-Joong Kim,et al. Complete chloroplast genome sequences from Korean ginseng (Panax schinseng Nees) and comparative analysis of sequence evolution among 17 vascular plants. , 2004, DNA research : an international journal for rapid publication of reports on genes and genomes.
[124] K. Bremer. Early Cretaceous lineages of monocot flowering plants. , 2000, Proceedings of the National Academy of Sciences of the United States of America.
[125] D. Sokoloff,et al. Morphology and development of the gynoecium in Centrolepidaceae: The most remarkable range of variation in Poales. , 2009, American journal of botany.
[126] E. L. Borba,et al. Pollination in Brazilian Syngonanthus (Eriocaulaceae) species: evidence for entomophily instead of anemophily. , 2005, Annals of botany.
[127] R. Cruden. Pollen grains: Why so many? , 2000, Plant Systematics and Evolution.
[128] V. L. Scatena,et al. Floral anatomy of Paepalanthoideae (Eriocaulaceae, Poales) and their Nectariferous structures. , 2007, Annals of botany.
[129] D. Soltis,et al. Rosid radiation and the rapid rise of angiosperm-dominated forests , 2009, Proceedings of the National Academy of Sciences.
[130] Robert K. Jansen,et al. Automatic annotation of organellar genomes with DOGMA , 2004, Bioinform..
[131] V. Goremykin,et al. Analysis of the Amborella trichopoda chloroplast genome sequence suggests that amborella is not a basal angiosperm. , 2003, Molecular biology and evolution.
[132] R. Hartley,et al. Phenolic constituents of the cell walls of monocotyledons , 1980 .
[133] Prof. Dr. Rolf M. T. Dahlgren,et al. The Families of the Monocotyledons , 1985, Springer Berlin Heidelberg.
[134] Michelle Waycott,et al. Phylogenetic Studies in Alismatidae, II: Evolution of Marine Angiosperms (Seagrasses) and Hydrophily , 1997 .
[135] Jerrold I. Davis,et al. Phylogeny, Genome Size, and Chromosome Evolution of Asparagales , 2006 .
[136] T. Givnish,et al. ECOLOGICAL CONSTRAINTS ON THE EVOLUTION OF BREEDING SYSTEMS IN SEED PLANTS: DIOECY AND DISPERSAL IN GYMNOSPERMS , 1980, Evolution; international journal of organic evolution.
[137] T. Soderstrom. Some evolutionary trends in the Bambusoideae (Poaceae). , 1981 .
[138] Robert C. Edgar,et al. MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.
[139] J. Wendel,et al. A Phylogeny of the Grass Family (Poaceae) Based on ndhF Sequence Data , 1995 .
[140] Mark W. Chase,et al. Evolution of the angiosperms: calibrating the family tree , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.
[141] A. Ruiz,et al. Floral scent of Eleocharis elegans (Kunth) Roem. & Schult. (Cyperaceae) , 2005 .
[142] H. Clifford,et al. The monocotyledons: a comparative study. , 1982 .
[143] S. Wölfl,et al. The chloroplast genome of the “basal” angiosperm Calycanthus fertilis – structural and phylogenetic analyses , 2003, Plant Systematics and Evolution.
[144] W. Zomlefer,et al. Advances in angiosperm systematics: examples from the Liliales and Asparagales1 , 1999 .
[145] Jerrold I. Davis,et al. Phylogenetics and character evolution in the grass family (Poaceae): Simultaneous analysis of morphological and Chloroplast DNA restriction site character sets , 2008, The Botanical Review.
[146] M. Hasebe,et al. Biosystematic studies on the family Tofieldiaceae I. Phylogeny and circumscription of the family inferred from DNA sequences of matK and rbcL. , 2004, Plant biology.
[147] A. Graybeal,et al. Is it better to add taxa or characters to a difficult phylogenetic problem? , 1998, Systematic biology.
[148] E. M. Friis,et al. Araceae from the Early Cretaceous of Portugal: evidence on the emergence of monocotyledons. , 2004, Proceedings of the National Academy of Sciences of the United States of America.
[149] The Monocotyledons: A Comparative Study. , 1983 .
[150] Sudhindra R Gadagkar,et al. Maximum likelihood outperforms maximum parsimony even when evolutionary rates are heterotachous. , 2005, Molecular biology and evolution.
[151] K. Kubitzki,et al. Flowering Plants. Monocotyledons: Alismatanae and Commelinanae (except Gramineae) , 1998 .
[152] D. Wedin. Species, Nitrogen, and Grassland Dynamics: The Constraints of Stuff , 1995 .
[153] W. Kress,et al. Unraveling the evolutionary radiation of the families of the Zingiberales using morphological and molecular evidence. , 2001, Systematic biology.
[154] T. Wetter,et al. Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs. , 2004, Genome research.
[155] R. Cruden. POLLEN‐OVULE RATIOS: A CONSERVATIVE INDICATOR OF BREEDING SYSTEMS IN FLOWERING PLANTS , 1977, Evolution; international journal of organic evolution.
[156] V. L. Scatena,et al. Floral anatomy of Eriocaulon elichrysoides and Syngonanthus caulescens (Eriocaulaceae) , 2003 .
[157] D. Soltis,et al. Amborella not a "basal angiosperm"? Not so fast. , 2004, American journal of botany.
[158] P. Rudall. The Nucellus and Chalaza in monocotyledons: Structure and systematics , 1997, The Botanical Review.
[159] D. Hillis. Inferring complex phylogenies. , 1996, Nature.
[160] Chung-Yen Lin,et al. The chloroplast genome of Phalaenopsis aphrodite (Orchidaceae): comparative analysis of evolutionary rate with that of grasses and its phylogenetic implications. , 2006, Molecular biology and evolution.
[161] M. Chase,et al. Large multi-gene phylogenetic trees of the grasses (Poaceae): progress towards complete tribal and generic level sampling. , 2008, Molecular phylogenetics and evolution.
[162] B. G. Briggs,et al. A new subfamilial and tribal classification of Restionaceae (Poales) , 2009 .
[163] Linda A. Raubeson,et al. Comparative chloroplast genomics: analyses including new sequences from the angiosperms Nuphar advena and Ranunculus macranthus , 2007, BMC Genomics.
[164] T. Givnish,et al. Consistency, characters, and the likelihood of correct phylogenetic inference. , 1997, Molecular phylogenetics and evolution.
[165] J. Leebens-Mack,et al. Complete plastid genome sequences of Drimys, Liriodendron, and Piper: implications for the phylogenetic relationships of magnoliids , 2006, BMC Evolutionary Biology.
[166] M. Chase,et al. Phylogenetic relationships in Cyperaceae subfamily Mapanioideae inferred from pollen and plastid DNA sequence data. , 2003, American journal of botany.
[167] D. Whitehead. CHAPTER 5 – Wind Pollination: Some Ecological and Evolutionary Perspectives , 1983 .
[168] R. Mache,et al. The plastid chromosome of spinach (Spinacia oleracea): complete nucleotide sequence and gene organization , 2001, Plant Molecular Biology.
[169] A. Henderson. Monocotyledons: Systematics and evolution. 2 vols. Edited by Paula Rudall, Phillip Cribb, David Cutler & Christopher Humphries. , 1996, Brittonia.
[170] J. Briggs,et al. Controls of nitrogen limitation in tallgrass prairie , 1991, Oecologia.
[171] W. Sakamoto,et al. The model plant Medicago truncatula exhibits biparental plastid inheritance. , 2008, Plant & cell physiology.
[172] M. Pagel,et al. Bayesian Analysis of Correlated Evolution of Discrete Characters by Reversible‐Jump Markov Chain Monte Carlo , 2006, The American Naturalist.
[173] T. Soderstrom,et al. Insect Pollination in Tropical Rain Forest Grasses , 1971 .
[174] P. Berry,et al. WIND POLLINATION, SELF‐INCOMPATIBILITY, AND ALTITUDINAL SHIFTS IN POLLINATION SYSTEMS IN THE HIGH ANDEAN GENUS ESPELETIA (ASTERACEAE) , 1989 .
[175] T. Soderstrom,et al. A Commentary on the Bamboos (Poaceae: Bambusoideae) , 1979 .
[176] T. Givnish,et al. PHYLOGENY, ADAPTIVE RADIATION, AND HISTORICAL BIOGEOGRAPHY OF BROMELIACEAE INFERRED FROM ndhF SEQUENCE DATA , 2007 .
[177] Dennis W. Stevenson,et al. Monocot systematics: a combined analysis , 1995 .
[178] Andrew Henderson,et al. A review of pollination studies in the Palmae , 1986, The Botanical Review.
[179] J. Blair. FIRE, N AVAILABILITY, AND PLANT RESPONSE IN GRASSLANDS: A TEST OF THE TRANSIENT MAXIMA HYPOTHESIS , 1997 .
[180] Knut Faegri,et al. The principles of pollination ecology , 1967 .
[181] K. Cameron. Utility of plastid psaB gene sequences for investigating intrafamilial relationships within Orchidaceae. , 2004, Molecular phylogenetics and evolution.
[182] P. Green,et al. Consed: a graphical tool for sequence finishing. , 1998, Genome research.
[183] Takayuki Asano,et al. Complete nucleotide sequence of the sugarcane (Saccharum officinarum) chloroplast genome: a comparative analysis of four monocot chloroplast genomes. , 2004, DNA research : an international journal for rapid publication of reports on genes and genomes.
[184] S. Weller,et al. Dioecy and the evolution of pollination systems inSchiedea and Alsinidendron (Caryophyllaceae:Alsinoideae) in the Hawaiian Islands. , 1998, American journal of botany.
[185] S. Wölfl,et al. The chloroplast genome of Nymphaea alba: whole-genome analyses and the problem of identifying the most basal angiosperm. , 2004, Molecular biology and evolution.
[186] P. Regal. POLLINATION BY WIND AND ANIMALS: Ecology of Geographic Patterns , 1982 .
[187] V. Savolainen,et al. Report Oligocene CO 2 Decline Promoted C 4 Photosynthesis in Grasses , 2008 .
[188] Ziheng Yang. Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: Approximate methods , 1994, Journal of Molecular Evolution.
[189] R. Jansen,et al. Phylogenetic and evolutionary implications of complete chloroplast genome sequences of four early-diverging angiosperms: Buxus (Buxaceae), Chloranthus (Chloranthaceae), Dioscorea (Dioscoreaceae), and Illicium (Schisandraceae). , 2007, Molecular phylogenetics and evolution.
[190] G. Jordan,et al. Early Eocene Ripogonum (Liliales: Ripogonaceae) leaf macrofossils from southern Australia , 2009 .
[191] H. Philippe,et al. Suppression of long-branch attraction artefacts in the animal phylogeny using a site-heterogeneous model , 2007, BMC Evolutionary Biology.
[192] S. Barrett,et al. Wind of change: new insights on the ecology and evolution of pollination and mating in wind-pollinated plants. , 2009, Annals of botany.
[193] Jerrold I. Davis,et al. Phylogeny and subfamilial classification of the grasses (Poaceae) , 2001 .
[194] K. Bremer. GONDWANAN EVOLUTION OF THE GRASS ALLIANCE OF FAMILIES (POALES) , 2002, Evolution; international journal of organic evolution.
[195] G. Learn,et al. Phylogenetic analysis of rbcL sequences identifies Acorus calamus as the primal extant monocotyledon. , 1993, Proceedings of the National Academy of Sciences of the United States of America.
[196] P. Cox. Abiotic pollination: an evolutionary escape for animal-pollinated angiosperms , 1991 .