A DIMMA-Based Memetic Algorithm for 0-1 Multidimensional Knapsack Problem Using DOE Approach for Parameter Tuning
暂无分享,去创建一个
[1] Fred W. Glover,et al. Exploiting nested inequalities and surrogate constraints , 2007, Eur. J. Oper. Res..
[2] Egon Balas,et al. An Algorithm for Large Zero-One Knapsack Problems , 1980, Oper. Res..
[3] William E. Hart,et al. Recent Advances in Memetic Algorithms , 2008 .
[4] Alexa T. McCray,et al. Identifying Temporal Changes and Topics that Promote Growth Within Online Communities: A Prospective Study of Six Online Cancer Forums , 2011, Int. J. Comput. Model. Algorithms Medicine.
[5] Arnaud Fréville,et al. The multidimensional 0-1 knapsack problem: An overview , 2004, Eur. J. Oper. Res..
[6] Fred Glover,et al. Critical Event Tabu Search for Multidimensional Knapsack Problems , 1996 .
[7] Masoud Yaghini,et al. DIMMA: A Design and Implementation Methodology for Metaheuristic Algorithms - A Perspective from Software Development , 2010, Int. J. Appl. Metaheuristic Comput..
[8] George C. Runger,et al. Using Experimental Design to Find Effective Parameter Settings for Heuristics , 2001, J. Heuristics.
[9] Günther R. Raidl,et al. The Multidimensional Knapsack Problem: Structure and Algorithms , 2010, INFORMS J. Comput..
[10] John E. Beasley,et al. A Genetic Algorithm for the Multidimensional Knapsack Problem , 1998, J. Heuristics.
[11] Susan H. Xu,et al. Greedy algorithm for the general multidimensional knapsack problem , 2007, Ann. Oper. Res..
[12] Krzysztof Fleszar,et al. Fast, effective heuristics for the 0-1 multi-dimensional knapsack problem , 2009, Comput. Oper. Res..
[13] Michel Vasquez,et al. Reduced costs propagation in an efficient implicit enumeration for the 01 multidimensional knapsack problem , 2008, J. Comb. Optim..
[14] Daniel Kudenko,et al. Tuning an Algorithm Using Design of Experiments , 2010, Experimental Methods for the Analysis of Optimization Algorithms.
[15] Maria Grazia Speranza,et al. Kernel search: A general heuristic for the multi-dimensional knapsack problem , 2010, Comput. Oper. Res..
[16] Saïd Salhi,et al. An iterative variable-based fixation heuristic for the 0-1 multidimensional knapsack problem , 2009, Eur. J. Oper. Res..
[17] Saïd Hanafi,et al. An efficient tabu search approach for the 0-1 multidimensional knapsack problem , 1998, Eur. J. Oper. Res..
[18] Fred W. Glover,et al. Cutting and Surrogate Constraint Analysis for Improved Multidimensional Knapsack Solutions , 2002, Ann. Oper. Res..
[19] Fred W. Glover,et al. Future paths for integer programming and links to artificial intelligence , 1986, Comput. Oper. Res..
[20] Dominique Quadri,et al. Upper Bounds for Large Scale Integer Quadratic Mulitdimensional Knapsack Problems , 2007 .
[21] Andreas Drexl,et al. A simulated annealing approach to the multiconstraint zero-one knapsack problem , 1988, Computing.
[22] Monique Frize,et al. Medical Outcome Prediction for Intensive Care Unit Patients , 2010, Int. J. Comput. Model. Algorithms Medicine.
[23] Zuren Feng,et al. An ant colony optimization approach for the multidimensional knapsack problem , 2010, J. Heuristics.
[24] Daniel Kudenko,et al. Tuning the Performance of the MMAS Heuristic , 2007, SLS.
[25] Leyuan Shi,et al. Hybrid Nested Partitions and Mathematical Programming Approach and Its Applications , 2008, IEEE Transactions on Automation Science and Engineering.
[26] Raymond R. Hill,et al. Problem reduction heuristic for the 0-1 multidimensional knapsack problem , 2012, Comput. Oper. Res..
[27] Sameh Al-Shihabi,et al. A hybrid of Nested Partition, Binary Ant System, and Linear Programming for the multidimensional knapsack problem , 2010, Comput. Oper. Res..
[28] El-Ghazali Talbi,et al. Metaheuristics - From Design to Implementation , 2009 .
[29] Johann Dréo,et al. Metaheuristics for Hard Optimization: Methods and Case Studies , 2005 .
[30] John H. Holland,et al. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .
[31] Masoud Yaghini,et al. DIMMA-Implemented Metaheuristics for Finding Shortest Hamiltonian Path Between Iranian Cities Using Sequential DOE Approach for Parameters Tuning , 2011, Int. J. Appl. Metaheuristic Comput..
[32] Federico Della Croce,et al. Improved core problem based heuristics for the 0/1 multi-dimensional knapsack problem , 2012, Comput. Oper. Res..
[33] Philippe Michelon,et al. A multi-level search strategy for the 0-1 Multidimensional Knapsack Problem , 2010, Discret. Appl. Math..
[34] William H. Press,et al. Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .
[35] Orhan Engin,et al. Investigation of Ant System parameter interactions by using design of experiments for job-shop scheduling problems , 2009, Comput. Ind. Eng..
[36] Manuel Laguna,et al. Fine-Tuning of Algorithms Using Fractional Experimental Designs and Local Search , 2006, Oper. Res..
[37] Michel Vasquez,et al. Improved results on the 0-1 multidimensional knapsack problem , 2005, Eur. J. Oper. Res..