A DIMMA-Based Memetic Algorithm for 0-1 Multidimensional Knapsack Problem Using DOE Approach for Parameter Tuning

Multidimensional 0-1 Knapsack Problem MKP is a well-known integer programming problems. The objective of MKP is to find a subset of items with maximum value satisfying the capacity constraints. A Memetic algorithm on the basis of Design and Implementation Methodology for Metaheuristic Algorithms DIMMA is proposed to solve MKP. DIMMA is a new methodology to develop a metaheuristic algorithm. The Memetic algorithm is categorized as metaheuristics and is a particular class of evolutionary algorithms. The parameters of the proposed algorithm are tuned by Design of Experiments DOE approach. DOE refers to the process of planning the experiment so that appropriate data that can be analyzed by statistical methods will be collected, resulting in valid and objective conclusions. The proposed algorithm is tested on several MKP standard instances from OR-Library. The results show the efficiency and effectiveness of the proposed algorithm.

[1]  Fred W. Glover,et al.  Exploiting nested inequalities and surrogate constraints , 2007, Eur. J. Oper. Res..

[2]  Egon Balas,et al.  An Algorithm for Large Zero-One Knapsack Problems , 1980, Oper. Res..

[3]  William E. Hart,et al.  Recent Advances in Memetic Algorithms , 2008 .

[4]  Alexa T. McCray,et al.  Identifying Temporal Changes and Topics that Promote Growth Within Online Communities: A Prospective Study of Six Online Cancer Forums , 2011, Int. J. Comput. Model. Algorithms Medicine.

[5]  Arnaud Fréville,et al.  The multidimensional 0-1 knapsack problem: An overview , 2004, Eur. J. Oper. Res..

[6]  Fred Glover,et al.  Critical Event Tabu Search for Multidimensional Knapsack Problems , 1996 .

[7]  Masoud Yaghini,et al.  DIMMA: A Design and Implementation Methodology for Metaheuristic Algorithms - A Perspective from Software Development , 2010, Int. J. Appl. Metaheuristic Comput..

[8]  George C. Runger,et al.  Using Experimental Design to Find Effective Parameter Settings for Heuristics , 2001, J. Heuristics.

[9]  Günther R. Raidl,et al.  The Multidimensional Knapsack Problem: Structure and Algorithms , 2010, INFORMS J. Comput..

[10]  John E. Beasley,et al.  A Genetic Algorithm for the Multidimensional Knapsack Problem , 1998, J. Heuristics.

[11]  Susan H. Xu,et al.  Greedy algorithm for the general multidimensional knapsack problem , 2007, Ann. Oper. Res..

[12]  Krzysztof Fleszar,et al.  Fast, effective heuristics for the 0-1 multi-dimensional knapsack problem , 2009, Comput. Oper. Res..

[13]  Michel Vasquez,et al.  Reduced costs propagation in an efficient implicit enumeration for the 01 multidimensional knapsack problem , 2008, J. Comb. Optim..

[14]  Daniel Kudenko,et al.  Tuning an Algorithm Using Design of Experiments , 2010, Experimental Methods for the Analysis of Optimization Algorithms.

[15]  Maria Grazia Speranza,et al.  Kernel search: A general heuristic for the multi-dimensional knapsack problem , 2010, Comput. Oper. Res..

[16]  Saïd Salhi,et al.  An iterative variable-based fixation heuristic for the 0-1 multidimensional knapsack problem , 2009, Eur. J. Oper. Res..

[17]  Saïd Hanafi,et al.  An efficient tabu search approach for the 0-1 multidimensional knapsack problem , 1998, Eur. J. Oper. Res..

[18]  Fred W. Glover,et al.  Cutting and Surrogate Constraint Analysis for Improved Multidimensional Knapsack Solutions , 2002, Ann. Oper. Res..

[19]  Fred W. Glover,et al.  Future paths for integer programming and links to artificial intelligence , 1986, Comput. Oper. Res..

[20]  Dominique Quadri,et al.  Upper Bounds for Large Scale Integer Quadratic Mulitdimensional Knapsack Problems , 2007 .

[21]  Andreas Drexl,et al.  A simulated annealing approach to the multiconstraint zero-one knapsack problem , 1988, Computing.

[22]  Monique Frize,et al.  Medical Outcome Prediction for Intensive Care Unit Patients , 2010, Int. J. Comput. Model. Algorithms Medicine.

[23]  Zuren Feng,et al.  An ant colony optimization approach for the multidimensional knapsack problem , 2010, J. Heuristics.

[24]  Daniel Kudenko,et al.  Tuning the Performance of the MMAS Heuristic , 2007, SLS.

[25]  Leyuan Shi,et al.  Hybrid Nested Partitions and Mathematical Programming Approach and Its Applications , 2008, IEEE Transactions on Automation Science and Engineering.

[26]  Raymond R. Hill,et al.  Problem reduction heuristic for the 0-1 multidimensional knapsack problem , 2012, Comput. Oper. Res..

[27]  Sameh Al-Shihabi,et al.  A hybrid of Nested Partition, Binary Ant System, and Linear Programming for the multidimensional knapsack problem , 2010, Comput. Oper. Res..

[28]  El-Ghazali Talbi,et al.  Metaheuristics - From Design to Implementation , 2009 .

[29]  Johann Dréo,et al.  Metaheuristics for Hard Optimization: Methods and Case Studies , 2005 .

[30]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[31]  Masoud Yaghini,et al.  DIMMA-Implemented Metaheuristics for Finding Shortest Hamiltonian Path Between Iranian Cities Using Sequential DOE Approach for Parameters Tuning , 2011, Int. J. Appl. Metaheuristic Comput..

[32]  Federico Della Croce,et al.  Improved core problem based heuristics for the 0/1 multi-dimensional knapsack problem , 2012, Comput. Oper. Res..

[33]  Philippe Michelon,et al.  A multi-level search strategy for the 0-1 Multidimensional Knapsack Problem , 2010, Discret. Appl. Math..

[34]  William H. Press,et al.  Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .

[35]  Orhan Engin,et al.  Investigation of Ant System parameter interactions by using design of experiments for job-shop scheduling problems , 2009, Comput. Ind. Eng..

[36]  Manuel Laguna,et al.  Fine-Tuning of Algorithms Using Fractional Experimental Designs and Local Search , 2006, Oper. Res..

[37]  Michel Vasquez,et al.  Improved results on the 0-1 multidimensional knapsack problem , 2005, Eur. J. Oper. Res..