Iterative Reweighted Least-Squares Gaussian Beam Migration and Velocity Inversion in the Image Domain Based on Point Spread Functions

Amplitude-preserving migration is very important for reservoir characterization, which can faithfully provide information on the strength of the reflectors. However, conventional migration algorithms do not compensate for variable illumination effects and can hardly obtain true amplitudes of medium parameter. Least-squares migration (LSM) is an effective method to address this issue. Unfortunately, there is a key problem with LSM methods: most LSM methods only consider illumination compensation but not consider the accuracy of migration velocity model. The accuracy of the migration velocity model directly affects the quality of migrated images. Moreover, changes in velocity are more indicative of reservoir properties than reflectivity. Therefore, it is necessary to incorporate velocity estimation into migration imaging to realize joint inversions. Based on these facts, we present an iterative reweighted LSM method by approximating the local Hessian using point spread functions. Then, we related the LSM results to the scattering potential, simultaneously achieving velocity update with illumination compensation. Based on the gradually changing characteristics of rock properties, we adopted a sparse derivative constraint rather than requiring the result to be sparse. Consequently, this processing caused the results to contain broader bandwidths, giving the image a more continuous and textured appearance. Next, we evaluated the proposed method using the Marmousi2 model. The results had a higher resolution and a more reliable amplitude than the initial migration images. Hence, we efficaciously completed the velocity model update, with our method achieving encouraging results under both relatively accurate migration velocity and highly smoothed migration velocity model tests.

[1]  G. McMechan,et al.  An Efficient and Stable High‐Resolution Seismic Imaging Method: Point‐Spread Function Deconvolution , 2022, Journal of Geophysical Research: Solid Earth.

[2]  Pengfei Yu,et al.  Elastic Least-Squares Reverse-Time Migration Based on a Modified Acoustic-Elastic Coupled Equation for OBS Four-Component Data , 2021, IEEE Transactions on Geoscience and Remote Sensing.

[3]  R. Clapp,et al.  Joint inversion of the reflectivity and the velocity model , 2021, Geophysics.

[4]  H. Fu,et al.  Enhance 3D seismic images resolution by deconvolving point spread function , 2021, First International Meeting for Applied Geoscience & Energy Expanded Abstracts.

[5]  I. Lecomte,et al.  Point‐spread function convolution to simulate prestack depth migrated images: A validation study , 2021, Geophysical Prospecting.

[6]  Mrinal K. Sen,et al.  A compressed data approach for image-domain least-squares migration , 2021 .

[7]  W. Mao,et al.  Linearized scattering problem in acoustic transversely isotropic media with a vertical symmetry axis , 2021, Wave Motion.

[8]  I. Lecomte,et al.  Paleokarst reservoirs: Efficient and flexible characterization using point-spread-function-based convolution modeling , 2021 .

[9]  A. Bulcão,et al.  Migration Deconvolution via Deep Learning , 2021, Pure and Applied Geophysics.

[10]  W. Mao,et al.  A joint imaging method of vertical seismic profiling data by generalized radon transform migration , 2021, Geophysical Prospecting.

[11]  A. Bulcão,et al.  Migration deconvolution using domain decomposition , 2021 .

[12]  Peng Xu,et al.  RTM deblurring with flexible WKBJ PSFs , 2020 .

[13]  Eric Verschuur,et al.  Joint migration inversion: features and challenges , 2020, Journal of Geophysics and Engineering.

[14]  W. Mao,et al.  Scattering pattern analysis and true‐amplitude generalized Radon transform migration for acoustic transversely isotropic media with a vertical axis of symmetry , 2020, Geophysical Prospecting.

[15]  P. Sava,et al.  Least-squares Gaussian beam migration in elastic media , 2019, GEOPHYSICS.

[16]  Jianfeng Zhang,et al.  Least-squares migration with a blockwise Hessian matrix: A prestack time-migration approach , 2019, GEOPHYSICS.

[17]  W. Dai,et al.  Image-Domain Least-Squares Migration for RTM Surface-Offset Gathers , 2019, 81st EAGE Conference and Exhibition 2019.

[18]  E. Verschuur,et al.  Research note: derivations of gradients in angle‐independent joint migration inversion , 2019, Geophysical Prospecting.

[19]  G. Schuster,et al.  Migration of viscoacoustic data using acoustic reverse time migration with hybrid deblurring filters , 2018, GEOPHYSICS.

[20]  Mrinal K. Sen,et al.  Fast image-domain target-oriented least-squares reverse time migration , 2018, GEOPHYSICS.

[21]  Didier Lecerf,et al.  A new approach to compensate for illumination differences in 4D surveys with different individual acquisition geometries , 2018 .

[22]  A. Berkhout,et al.  Joint migration inversion: Simultaneous determination of velocity fields and depth images using all orders of scattering , 2016 .

[23]  R. Coates,et al.  Least-squares migration — Data domain versus image domain using point spread functions , 2016 .

[24]  Yingcai Zheng,et al.  Least-squares Gaussian beam migration , 2015 .

[25]  I. Lecomte,et al.  Ray-based seismic modeling of geologic models: Understanding and analyzing seismic images efficiently , 2015 .

[26]  Charles Inyang,et al.  Depth domain inversion to improve the fidelity of subsalt imaging: a Gulf of Mexico case study , 2015 .

[27]  D. Verschuur,et al.  Robust anisotropy estimation using joint migration inversion , 2015 .

[28]  R. Fletcher,et al.  Q-compensation Through Depth Domain Inversion , 2015 .

[29]  R. Fletcher,et al.  Deghosting through Depth Domain Inversion , 2015 .

[30]  Lian Duan,et al.  Amplitude-preserving reverse time migration: From reflectivity to velocity and impedance inversion , 2014 .

[31]  A. J. Berkhout,et al.  Review Paper: An outlook on the future of seismic imaging, Part III: Joint Migration Inversion , 2014 .

[32]  I. Vasconcelos,et al.  3D source deghosting after imaging , 2014 .

[33]  Gerard T. Schuster,et al.  Plane-wave least-squares reverse-time migration , 2012 .

[34]  B. Biondi,et al.  Subsalt imaging by target-oriented inversion-based imaging:A 3D field-data example , 2013 .

[35]  S. Dong,et al.  Least-squares reverse time migration: towards true amplitude imaging and improving the resolution , 2012 .

[36]  D. Nichols,et al.  Inversion After Depth Imaging , 2012 .

[37]  M. Protasov,et al.  True amplitude elastic Gaussian beam imaging of multicomponent walkaway vertical seismic profiling data , 2012 .

[38]  Wei Dai,et al.  Multi‐source least‐squares reverse time migration , 2012 .

[39]  J. Dangerfield,et al.  Improved Imaging and Resolution of Overburden Heterogeneity by Combining Amplitude Inversion with Tomography , 2012 .

[40]  Arie Verdel,et al.  Depth migration by the Gaussian beam summation method , 2010 .

[41]  R. Clapp,et al.  Imaging by target-oriented wave-equation inversion , 2009 .

[42]  Yaxun Tang Target-oriented wave-equation least-squares migration/inversion with phase-encoded Hessian , 2009 .

[43]  Gerard T. Schuster,et al.  Fast least-squares migration with a deblurring filter , 2009 .

[44]  Jean Virieux,et al.  An overview of full-waveform inversion in exploration geophysics , 2009 .

[45]  Frédo Durand,et al.  Understanding and evaluating blind deconvolution algorithms , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[46]  Samuel H. Gray,et al.  True-amplitude Gaussian-beam migration , 2009 .

[47]  William W. Symes,et al.  Migration velocity analysis and waveform inversion , 2008 .

[48]  Isabelle Lecomte,et al.  Resolution and illumination analyses in PSDM A ray-based approach , 2008 .

[49]  Evert Slob,et al.  Simulating migrated and inverted seismic data by filtering a geologic model , 2008 .

[50]  Frédo Durand,et al.  Image and depth from a conventional camera with a coded aperture , 2007, ACM Trans. Graph..

[51]  William T. Freeman,et al.  What makes a good model of natural images? , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[52]  Antoine Guitton,et al.  Regularizing seismic inverse problems by model reparameterization using plane-wave construction , 2006 .

[53]  Ru-Shan Wu,et al.  Wave-equation-based seismic illumination analysis , 2006 .

[54]  Gary Martin,et al.  Marmousi2 An elastic upgrade for Marmousi , 2006 .

[55]  Michael J. Black,et al.  Fields of Experts: a framework for learning image priors , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[56]  Paul Sava,et al.  Wave-equation migration velocity analysis by focusing diffractions and reflections , 2005 .

[57]  Motoyuki Sato,et al.  Migration velocity analysis and prestack migration of common-transmitter GPR data , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[58]  Qinya Liu,et al.  Tomography, Adjoint Methods, Time-Reversal, and Banana-Doughnut Kernels , 2004 .

[59]  Paul Sava,et al.  Wave-equation migration velocity analysis. I. Theory , 2004 .

[60]  A. Guitton Amplitude and kinematic corrections of migrated images for nonunitary imaging operators , 2004 .

[61]  R. Plessix,et al.  Frequency-domain finite-difference amplitude-preserving migration , 2004 .

[62]  J. Rickett Illumination-based normalization for wave-equation depth migration , 2003 .

[63]  Leiv-J. Gelius,et al.  Analysis of the resolution function in seismic prestack depth imaging , 2002 .

[64]  Yoshio Fukao,et al.  Application of a three-dimensional ray-tracing technique to global P, PP and Pdiff traveltime tomography , 2001 .

[65]  V. Červený,et al.  Seismic Ray Theory , 2001, Encyclopedia of Solid Earth Geophysics.

[66]  N. R. Hill,et al.  Prestack Gaussian‐beam depth migration , 2001 .

[67]  Guy Chavent,et al.  Migration‐based traveltime waveform inversion of 2-D simple structures: A synthetic example , 2001 .

[68]  G. Schuster,et al.  Prestack migration deconvolution , 2001 .

[69]  Harmen Bijwaard,et al.  Non‐linear global P‐wave tomography by iterated linearized inversion , 2000 .

[70]  Kees Wapenaar,et al.  Apparent AVA effects of fine layering , 1999 .

[71]  Gerard T. Schuster,et al.  Resolution limits of migrated images , 1999 .

[72]  Gerard T. Schuster,et al.  Poststack Migration Deconvolution , 1999 .

[73]  G. Chavent,et al.  An optimal true-amplitude least-squares prestack depth-migration operator , 1999 .

[74]  G. Schuster,et al.  Least-squares migration of incomplete reflection data , 1999 .

[75]  M. Nafi Toksöz,et al.  Nonlinear refraction traveltime tomography , 1998 .

[76]  Hicks,et al.  Gauss–Newton and full Newton methods in frequency–space seismic waveform inversion , 1998 .

[77]  Gerard T. Schuster,et al.  Wavepath eikonal traveltime inversion: Theory , 1993 .

[78]  N. R. Hill,et al.  Gaussian beam migration , 1990 .

[79]  Gregory Beylkin,et al.  A new slant on seismic imaging: Migration and integral geometry , 1987 .

[80]  A. Tarantola Inversion of seismic reflection data in the acoustic approximation , 1984 .

[81]  Stewart A. Levin,et al.  Principle of reverse-time migration , 1984 .

[82]  W. Mao,et al.  Elastic Least-Squares Gaussian Beam Imaging With Point Spread Functions , 2022, IEEE Geoscience and Remote Sensing Letters.

[83]  Qingtian Lü,et al.  PS-Wave Angle-Domain Imaging With Gaussian Beam Summation in 2-D TTI Media , 2022, IEEE Geoscience and Remote Sensing Letters.

[84]  W. Mao,et al.  Multi-Parameter True-Amplitude Generalized Radon Transform Inversion for Acoustic Transversely Isotropic Media With a Vertical Symmetry Axis , 2022, IEEE Transactions on Geoscience and Remote Sensing.

[85]  Jing-Hua Gao,et al.  Consistent Least-Squares Reverse Time Migration Using Convolutional Neural Networks , 2022, IEEE Transactions on Geoscience and Remote Sensing.

[86]  W. Mao,et al.  Born Scattering Integral, Scattering Radiation Pattern, and Generalized Radon Transform Inversion in Acoustic Tilted Transversely Isotropic Media , 2022, IEEE Transactions on Geoscience and Remote Sensing.

[87]  B. He,et al.  Wave‐Equation Migration Velocity Analysis Using Radon‐Domain Common‐Image Gathers , 2020 .

[88]  N. Chemingui,et al.  Least-Squares Wave Equation Migration With Angle Gathers , 2019, 81st EAGE Conference and Exhibition 2019.

[89]  Yangkang Chen,et al.  Seismic imaging of incomplete data and simultaneous-source data using least-squares reverse time migration with shaping regularization , 2016 .

[90]  L. Zhenchun,et al.  Least‐Squares Reverse Time Migration in Visco‐Acoustic Media , 2014 .

[91]  Yu Zhang,et al.  A stable and practical implementation of least-squares reverse time migration , 2013 .

[92]  Håvar Gjøystdal,et al.  Simulated Prestack Local Imaging: a robust and efficient interpretation tool to control illumination, resolution, and time-lapse properties of reservoirs. , 2003 .

[93]  V. Červený Expansion of a Plane Wave into Gaussian Beams , 2002 .

[94]  Jack K. Cohen,et al.  Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion , 2001 .

[95]  Gerard T. Schuster,et al.  Green's function for migration: Continuous recording geometry , 2000 .

[96]  Yue Wang,et al.  REVERSE-TIME MIGRATION , 1999 .

[97]  Guy Chavent,et al.  Waveform Inversion of Reflection Seismic Data for Kinematic Parameters by Local Optimization , 1998, SIAM J. Sci. Comput..

[98]  Leiv-J. Gelius,et al.  Have a look at the resolution of prestack depth migration for any model, survey and wavefields. , 1998 .

[99]  Guy Chavent,et al.  Automatic Determination of Velocities Via Migration-based Traveltime Waveform Inversion: A Synthetic Data Example , 1994 .

[100]  Gerard T. Schuster,et al.  Least-Squares Cross-Well Migration , 1993 .

[101]  Gregory Beylkin,et al.  Linearized inverse scattering problems in acoustics and elasticity , 1990 .

[102]  Gregory Beylkin,et al.  Imaging of discontinuities in the inverse scattering problem by inversion of a causal generalized Radon transform , 1985 .

[103]  M. Popov A new method of computation of wave fields using Gaussian beams , 1982 .

[104]  Yue Wang,et al.  ELASTIC REVERSE TIME MIGRATION , 2022 .