Environmental fate Aggregation Nanoecotoxicology Aquatic invertebrates Mytilus edulis Haemocytes Lysosomal biomarker

............................................................................................................................................. iii Acknowledgements ......................................................................................................................... v List of Abbreviations ..................................................................................................................... ix 1. Introduction .............................................................................................................................. 1 1.1 Nanotechnology .............................................................................................................................. 1 1.2 Nanotoxicology ................................................................................................................................ 5 1.3 Objectives ........................................................................................................................................ 10 1.4 Outline .............................................................................................................................................. 11 2. Background ............................................................................................................................. 12 2.1 The blue mussel ............................................................................................................................ 12 2.1.1 Feeding and digestion .......................................................................................................................... 13 2.1.2 Circulation ................................................................................................................................................. 14 2.1.3 Defence mechanism .............................................................................................................................. 14 2.2 Titanium dioxide nanoparticles .............................................................................................. 15 2.3 Fate of nanoparticles in the aquatic environment ............................................................ 16 2.3.1 Nanoparticles entering the aquatic system ................................................................................ 16 2.3.2 Persistence ................................................................................................................................................ 17 2.3.3 Behaviour in the water – Aggregation .......................................................................................... 17 2.4 Interactions between nanoparticles and aquatic invertebrates .................................. 23 2.4.1 Uptake across the respiratory epithelium ................................................................................... 23 2.4.2 Ingestion and subsequent cellular uptake .................................................................................. 24 2.4.3 Bioaccumulation ..................................................................................................................................... 27 2.4.4 Transfer along food chain ................................................................................................................... 28 2.5 Biological effects ........................................................................................................................... 29 2.5.1 Lethal responses of nano-­‐TiO2 ......................................................................................................... 30 2.5.2 Biochemical effects of nanoparticles ............................................................................................. 30 2.5.3 Physiologic effects of nanoparticles ............................................................................................... 34 2.5.4 Interactive effects ................................................................................................................................... 35 3. Materials and methods ....................................................................................................... 36 3.1 Behaviour of nanoparticles in seawater .............................................................................. 36 3.2 Transmission electron microscopy ........................................................................................ 36 3.3 Concentration of nano-­‐TiO2 in seawater .............................................................................. 37 3.4 Acute toxicity test ......................................................................................................................... 39 3.5 Chronic toxicity test ..................................................................................................................... 39 3.6 Haemolymph sampling ............................................................................................................... 40 3.7 Neutral red retention time ........................................................................................................ 40 3.8 Collection of histology samples ............................................................................................... 41 3.9 Data management and statistical analysis .......................................................................... 42 3.9.1 Turbidity and concentration ............................................................................................................. 42 3.9.2 Neutral Red Retention Time .............................................................................................................. 42 Nanostructured titanium dioxide: Fate in the aquatic environment and effects on the blue mussel Mytilus edulis Master’s thesis in Biological Chemistry viii 4. Results ...................................................................................................................................... 43 4.1 Solubility of nano-­‐TiO2 in water .............................................................................................. 43 4.2 Transmission electron microscopy ........................................................................................ 45 4.3 Determination of nano-­‐TiO2 concentrations in seawater .............................................. 46 4.4 Short-­‐term exposure ................................................................................................................... 47 4.5 Long-­‐term exposure .................................................................................................................... 48 4.6 Variations in exposure concentrations ................................................................................. 49 5. Discussion ............................................................................................................................... 52 5.1 Future work .................................................................................................................................... 59 6. Conclusion ............................................................................................................................... 61 References ....................................................................................................................................... 62 List of figures .................................................................................................................................. 71 List of tables ................................................................................................................................... 72 Appendices ..................................................................................................................................... 73 Appendix 1. Turbidity measurements of nano-­‐TiO2 samples .................................................. 73 Appendix 2. Data on test organisms ................................................................................................. 74 Nanostructured titanium dioxide: Fate in the aquatic environment and effects on the blue mussel Mytilus edulis Master’s thesis in Biological Chemistry ix List of Abbreviations CNT Carbon nanotube EC50 Effect concentration, 50% ERA Environmental risk assessment GST Glutathione S-transferase ISO International Organization for Standardization Kow Octanol-water partition coefficient LC50 Lethal concentration, 50% LMS Lysosomal membrane stability LOEC Lowest observable effect concentration LPO Lipid peroxidation Nano-SiO2 Silicon dioxide nanoparticles Nano-TiO2 Titanium dioxide nanoparticles NOEC No observable effect concentration NTU Nephelometric turbidity units PAH Polycyclic aromatic hydrocarbons PEC Predicted environmental concentration PNEC Predicted no effect concentration ROS Reactive oxygen species SOP Standard operating procedure TEM Transmission electron microscopy Nanostructured titanium dioxide: Fate in the aquatic environment and effects on the blue mussel Mytilus edulis Master’s thesis in Biological Chemistry x Nanostructured titanium dioxide: Fate in the aquatic environment and effects on the blue mussel Mytilus edulis Master’s thesis in Biological Chemistry 1

[1]  Charles M. Lieber,et al.  Coaxial silicon nanowires as solar cells and nanoelectronic power sources , 2007, Nature.

[2]  Bengt Fadeel,et al.  Better safe than sorry: Understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. , 2010, Advanced drug delivery reviews.

[3]  Roland W. Scholz,et al.  Exposure modeling of engineered nanoparticles , 2009 .

[4]  Xiaoqing Cai,et al.  The interaction and toxicity of multi-walled carbon nanotubes with Stylonychia mytilus. , 2006, Journal of nanoscience and nanotechnology.

[5]  Elijah J Petersen,et al.  Biological uptake and depuration of carbon nanotubes by Daphnia magna. , 2009, Environmental science & technology.

[6]  P. Beninger,et al.  The role of mucus in particle processing by suspension-feeding marine bivalves: unifying principles , 1997 .

[7]  B. Bayne The Effects of Stress and Pollution on Marine Animals , 1984 .

[8]  Peter Brimblecombe Water, Air, & Soil Pollution: Focus: Preface , 2007 .

[9]  L. Ménard,et al.  Nanoparticles Actual Knowledge about Occupational Health and Safety Risks and Prevention Measures , 2006 .

[10]  Patrick Winter,et al.  Applications of Nanotechnology to Atherosclerosis, Thrombosis, and Vascular Biology , 2005, Arteriosclerosis, thrombosis, and vascular biology.

[11]  A. Hawkins,et al.  Novel observations underlying the fast growth of suspension-feeding shellfish in turbid environments: Mytilus edulis , 1996 .

[12]  J. Widdows,et al.  Mussels and environmental contaminants : bioaccumulation and physiological aspects , 1992 .

[13]  Wei-xian Zhang,et al.  Nanoscale Iron Particles for Environmental Remediation: An Overview , 2003 .

[14]  Yan Li,et al.  Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to Zebrafish (Danio rerio) early developmental stage , 2008, Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering.

[15]  Julian Moger,et al.  Sublethal toxicity of nano-titanium dioxide and carbon nanotubes in a sediment dwelling marine polychaete. , 2010, Environmental pollution.

[16]  Kevin Robbie,et al.  Nanomaterials and nanoparticles: Sources and toxicity , 2007, Biointerphases.

[17]  Eva Oberdörster,et al.  Ecotoxicology of carbon-based engineered nanoparticles: Effects of fullerene (C60) on aquatic organisms , 2006 .

[18]  R. Reid The distribution of digestive tract enzymes in lamellibranchiate bivalves. , 1968, Comparative biochemistry and physiology.

[19]  Richard D Handy,et al.  Dietary exposure to titanium dioxide nanoparticles in rainbow trout, (Oncorhynchus mykiss): no effect on growth, but subtle biochemical disturbances in the brain , 2009, Ecotoxicology.

[20]  F. Møhlenberg,et al.  Particle selection in suspension-feeding bivalves , 1981 .

[21]  Rebecca Klaper,et al.  Toxicity biomarker expression in daphnids exposed to manufactured nanoparticles: changes in toxicity with functionalization. , 2009, Environmental pollution.

[22]  R. Pipe Generation of reactive oxygen metabolites by the haemocytes of the mussel Mytilus edulis. , 1992, Developmental and comparative immunology.

[23]  Macdonald,et al.  Postingestive selection in the sea scallop, Placopecten magellanicus (Gmelin): the role of particle size and density. , 2000, Journal of experimental marine biology and ecology.

[24]  E. Cadenas,et al.  Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane space. , 2001, The Biochemical journal.

[25]  Thilo Hofmann,et al.  Nanostructured TiO2: transport behavior and effects on aquatic microbial communities under environmental conditions. , 2009, Environmental science & technology.

[26]  Richard D Handy,et al.  Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): gill injury, oxidative stress, and other physiological effects. , 2007, Aquatic toxicology.

[27]  Navid B. Saleh,et al.  Nanosize Titanium Dioxide Stimulates Reactive Oxygen Species in Brain Microglia and Damages Neurons in Vitro , 2007, Environmental health perspectives.

[28]  T. Hanazato,et al.  Pesticide effects on freshwater zooplankton: an ecological perspective. , 2001, Environmental pollution.

[29]  Walter J. Weber,et al.  Ecological Uptake and Depuration of Carbon Nanotubes by Lumbriculus variegatus , 2008, Environmental health perspectives.

[30]  Eva Oberdörster,et al.  Toxicity of an engineered nanoparticle (fullerene, C60) in two aquatic species, Daphnia and fathead minnow. , 2006, Marine environmental research.

[31]  Shuk Han Cheng,et al.  Nuclear penetration of surface functionalized gold nanoparticles. , 2009, Toxicology and applied pharmacology.

[32]  I. Sayeed,et al.  Oxidative stress biomarkers of exposure to deltamethrin in freshwater fish, Channa punctatus Bloch. , 2003, Ecotoxicology and environmental safety.

[33]  Jamie R. Lead,et al.  Aquatic Colloids and Nanoparticles: Current Knowledge and Future Trends , 2006 .

[34]  Qasim Chaudhry,et al.  A comparison of nanoparticle and fine particle uptake by Daphnia magna , 2009, Environmental toxicology and chemistry.

[35]  K. Jan,et al.  Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. , 2005, Toxicology.

[36]  Jamie R Lead,et al.  Nanomaterials in the environment: Behavior, fate, bioavailability, and effects , 2008, Environmental toxicology and chemistry.

[37]  Mark Crane,et al.  The ecotoxicology and chemistry of manufactured nanoparticles , 2008, Ecotoxicology.

[38]  Richard C. Thompson,et al.  Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L). , 2008, Environmental science & technology.

[39]  J. James,et al.  Research strategies for safety evaluation of nanomaterials, part IV: risk assessment of nanoparticles. , 2006, Toxicological sciences : an official journal of the Society of Toxicology.

[40]  J. Evan Ward,et al.  Marine aggregates facilitate ingestion of nanoparticles by suspension-feeding bivalves. , 2009, Marine environmental research.

[41]  K. Donaldson,et al.  Inhalation of poorly soluble particles. II. Influence Of particle surface area on inflammation and clearance. , 2000, Inhalation toxicology.

[42]  Xiaoshan Zhu,et al.  Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. , 2010, Chemosphere.

[43]  H. Jarvie,et al.  Just scratching the surface? New techniques show how surface functionality of nanoparticles influences their environmental fate , 2010 .

[44]  W. Wergin Essential cell biology (2nd edition). By Bruce Alberts, Dennis Bray, Karen Hopkin, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, Peter Walter. Garland Science/Taylor and Francis Group, New York and London (2003). ISBN 0-8153-3480-X; hardback; 740 pages illustrated; $105.00 , 2006 .

[45]  E. Cabiscol,et al.  Oxidative stress in bacteria and protein damage by reactive oxygen species. , 2000, International microbiology : the official journal of the Spanish Society for Microbiology.

[46]  G. Pojana,et al.  Biomarkers in Mytilus galloprovincialis exposed to suspensions of selected nanoparticles (Nano carbon black, C60 fullerene, Nano-TiO2, Nano-SiO2). , 2010, Aquatic toxicology.

[47]  Pratim Biswas,et al.  Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies , 2009 .

[48]  Navid B. Saleh,et al.  Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity. , 2006, Environmental science & technology.

[49]  R. Neves Bivalve Molluscs: Biology, Ecology, and Culture , 2004 .

[50]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[51]  Utilization of detritus and bacteria as food sources by two bivalve suspension-feeders , the oyster Crassostrea virginica and the mussel , 2006 .

[52]  Qasim Chaudhry,et al.  Engineered nanomaterials in soils and water: how do they behave and could they pose a risk to human health? , 2007, Nanomedicine.

[53]  C. Jafvert,et al.  Buckminsterfullerene's (C60) octanol-water partition coefficient (Kow) and aqueous solubility. , 2008, Environmental science & technology.

[54]  A. Hawkins,et al.  Suspension-feeding behaviour in tropical bivalve molluscs: Perna viridis Crassostrea belcheri Crassostrea iradelei Saccostrea cucculata and Pinctada margarifera , 1998 .

[55]  K. Knauer,et al.  Reduced toxicity of diuron to the freshwater green alga Pseudokirchneriella subcapitata in the presence of black carbon. , 2007, Aquatic toxicology.

[56]  C. Gagnon,et al.  Ecotoxicity of CdTe quantum dots to freshwater mussels: impacts on immune system, oxidative stress and genotoxicity. , 2008, Aquatic toxicology.

[57]  Katja Broeg,et al.  Effects of nanoparticles in Mytilus edulis gills and hepatopancreas - a new threat to marine life? , 2008, Marine environmental research.

[58]  B. Morton 2 – Feeding and Digestion in Bivalvia , 1983 .

[59]  K. Jain,et al.  Advances in the field of nanooncology , 2010, BMC medicine.

[60]  B. Derjaguin,et al.  Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes , 1993 .

[61]  T. Hofmann,et al.  Nanoparticles: structure, properties, preparation and behaviour in environmental media , 2008, Ecotoxicology.

[62]  Anne Kahru,et al.  Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. , 2008, Chemosphere.

[63]  Y H R I N G W O O D,et al.  Fullerene Exposures with Oysters : Embryonic , Adult , and Cellular Responses , 2009 .

[64]  T. Webb,et al.  Pulmonary toxicity study in rats with three forms of ultrafine-TiO2 particles: differential responses related to surface properties. , 2007, Toxicology.

[65]  V. Colvin The potential environmental impact of engineered nanomaterials , 2003, Nature Biotechnology.

[66]  Jamie R Lead,et al.  Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. , 2008, The Science of the total environment.

[67]  S. Ohkuma,et al.  Effect of weak bases on the intralysosomal pH in mouse peritoneal macrophages , 1981, The Journal of cell biology.

[68]  M. Wiesner,et al.  Fullerol cluster formation in aqueous solutions: implications for environmental release. , 2007, Journal of colloid and interface science.

[69]  M. Wazne,et al.  Aggregation and deposition behavior of boron nanoparticles in porous media. , 2009, Journal of colloid and interface science.

[70]  Menachem Elimelech,et al.  Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions. , 2007, Journal of colloid and interface science.

[71]  Kun Yang,et al.  Interactions of humic acid with nanosized inorganic oxides. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[72]  Marek Kosmulski,et al.  The significance of the difference in the point of zero charge between rutile and anatase. , 2002, Advances in colloid and interface science.

[73]  Philip M. Gschwend,et al.  Aquatic colloids: Concepts, definitions, and current challenges , 1997 .

[74]  B. Xing,et al.  Effect of sub-acute exposure to TiO2 nanoparticles on oxidative stress and histopathological changes in Juvenile Carp (Cyprinus carpio). , 2009, Journal of environmental sciences.

[75]  Mason B. Tomson,et al.  Naphthalene Adsorption and Desorption from Aqueous C60 Fullerene , 2004 .

[76]  C. Contado,et al.  TiO2 in commercial sunscreen lotion: flow field-flow fractionation and ICP-AES together for size analysis. , 2008, Analytical chemistry.

[77]  A. Smaal,et al.  Selective ingestion of phytoplankton by the bivalvesMytilus edulis L. andCerastoderma edule (L.) , 1991, Hydrobiological Bulletin.

[78]  John C Crittenden,et al.  Enhanced bioaccumulation of cadmium in carp in the presence of titanium dioxide nanoparticles. , 2007, Chemosphere.

[79]  P. Cummings,et al.  C60 binds to and deforms nucleotides. , 2005, Biophysical journal.

[80]  Thomas H Hutchinson,et al.  Uptake and biological responses to nano-Fe versus soluble FeCl3 in excised mussel gills , 2010, Analytical and bioanalytical chemistry.

[81]  M. Wiesner,et al.  Aggregation and Deposition Characteristics of Fullerene Nanoparticles in Aqueous Systems , 2005 .

[82]  Kota Kobayashi,et al.  Optical characteristics of titanium oxide interference film and the film laminated with oxides and their applications for cosmetics. , 2004, Journal of cosmetic science.

[83]  Richard D. Handy,et al.  The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs , 2008, Ecotoxicology.

[84]  R. Pipe Hydrolytic enzymes associated with the granular haemocytes of the marine musselMytilus edulis , 1990, The Histochemical Journal.

[85]  C. Jørgensen Bivalve filter feeding : hydrodynamics, bioenergetics, physiology and Ecology , 1990 .

[86]  K. Linge,et al.  Bioavailability of nanoscale metal oxides TiO(2), CeO(2), and ZnO to fish. , 2010, Environmental science & technology.

[87]  B. Sanderson,et al.  Cyto- and genotoxicity of ultrafine TiO2 particles in cultured human lymphoblastoid cells. , 2007, Mutation research.

[88]  R. Handy,et al.  Toxic effects of nanoparticles and nanomaterials: Implications for public health, risk assessment and the public perception of nanotechnology , 2007 .

[89]  Nathalie Tufenkji,et al.  Aggregation of titanium dioxide nanoparticles: role of a fulvic acid. , 2009, Environmental science & technology.

[90]  P. Chapman Integrating toxicology and ecology: putting the "eco" into ecotoxicology. , 2002, Marine pollution bulletin.

[91]  Rui Qiao,et al.  In vivo biomodification of lipid-coated carbon nanotubes by Daphnia magna. , 2007, Environmental science & technology.

[92]  D. Livingstone,et al.  Mussels and environmental contaminants : molecular and cellular aspects , 1992 .

[93]  H. Riisgård Efficiency of particle retention and filtration rate in 6 species of Northeast American bivalves , 1988 .

[94]  Robert Landsiedel,et al.  Acute and chronic effects of nano- and non-nano-scale TiO(2) and ZnO particles on mobility and reproduction of the freshwater invertebrate Daphnia magna. , 2009, Chemosphere.

[95]  Rebecca Klaper,et al.  Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles , 2006, Environmental toxicology and chemistry.

[96]  Damià Barceló,et al.  Ecotoxicity and analysis of nanomaterials in the aquatic environment , 2009, Analytical and bioanalytical chemistry.

[97]  Y. Lan,et al.  Phase transition between nanostructures of titanate and titanium dioxides via simple wet-chemical reactions. , 2005, Journal of the American Chemical Society.

[98]  Robert A Hoke,et al.  Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management. , 2007, Toxicology letters.

[99]  Xuezhi Zhang,et al.  Trophic transfer of TiO(2) nanoparticles from Daphnia to zebrafish in a simplified freshwater food chain. , 2010, Chemosphere.

[100]  Sabine Neuss,et al.  Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. , 2009, Small.

[101]  J. West,et al.  Correlating nanoscale titania structure with toxicity: a cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. , 2006, Toxicological sciences : an official journal of the Society of Toxicology.

[102]  John A Tomenson,et al.  Titanium dioxide: inhalation toxicology and epidemiology. , 2005, The Annals of occupational hygiene.

[103]  Vicki Stone,et al.  Identification of the mechanisms that drive the toxicity of TiO2 particulates: the contribution of physicochemical characteristics , 2009, Particle and Fibre Toxicology.

[104]  Peter Wick,et al.  Nanotoxicology: an interdisciplinary challenge. , 2011, Angewandte Chemie.

[105]  F. Møhlenberg,et al.  Feeding, particle selection and carbon absorption in Mytilus edulis in different mixtures of algae and resuspended bottom material , 1980 .