3-MANIFOLD KNOT GENUS is NP-complete
暂无分享,去创建一个
Joel Hass | Ian Agol | William Thurston | W. Thurston | J. Hass | I. Agol
[1] Horst Schubert,et al. Bestimmung der Primfaktorzerlegung von Verkettungen , 1961 .
[2] M. Dehn,et al. Über die Topologie des dreidimensionalen Raumes , 1910 .
[3] J. Hyam Rubinstein,et al. PL equivariant surgery and invariant decompositions of 3-manifolds , 1989 .
[4] Jeffrey C. Lagarias,et al. The computational complexity of knot and link problems , 1999, JACM.
[5] David S. Johnson,et al. Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .
[6] W. Thurston,et al. The Computational Complexity of Knot Genus and Spanning Area , 2002, math/0205057.
[7] H. Seifert,et al. Über das Geschlecht von Knoten , 1935 .
[8] W. Haken. Theorie der Normalflächen , 1961 .
[9] William Jaco,et al. Algorithms for the complete decomposition of a closed $3$-manifold , 1995 .
[10] David K. Smith. Theory of Linear and Integer Programming , 1987 .
[11] Thomas J. Schaefer,et al. The complexity of satisfiability problems , 1978, STOC.
[12] Hellmuth Kneser,et al. Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten. , 1929 .
[13] Ulrich Oertel,et al. An algorithm to decide if a 3-manifold is a Haken manifold , 1984 .