GALOIS AUTOMORPHISMS AND CLASSICAL GROUPS
暂无分享,去创建一个
[1] A. A. Schaeffer Fry. Galois-equivariant McKay bijections for primes dividing q − 1 , 2021, Israel Journal of Mathematics.
[2] A. S. Fry,et al. The inductive McKay–Navarro conditions for the prime 2 and some groups of Lie type , 2021, Proceedings of the American Mathematical Society, Series B.
[3] Gabriel Navarro,et al. Characters and generation of Sylow 2-subgroups , 2021 .
[4] A. A. Schaeffer Fry,et al. On the inductive Alperin–McKay conditions in the maximally split case , 2020, Mathematische Zeitschrift.
[5] A. S. Fry. Galois-equivariant McKay bijections for primes dividing $q-1$ , 2020, 2007.15575.
[6] M. Geck,et al. The Character Theory of Finite Groups of Lie Type , 2020 .
[7] Noelia Rizo,et al. Galois action on the principal block and cyclic Sylow subgroups , 2019, Algebra & Number Theory.
[8] Jay Taylor,et al. Unitriangular shape of decomposition matrices of unipotent blocks , 2019, Annals of Mathematics.
[9] G. Navarro,et al. A reduction theorem for the Galois–McKay conjecture , 2019, Transactions of the American Mathematical Society.
[10] G. Navarro,et al. Sylow subgroups, exponents, and character values , 2019, Transactions of the American Mathematical Society.
[11] Conghui Li. An equivariant bijection between irreducible Brauer characters and weights for Sp(2n,q) , 2018, Journal of Algebra.
[12] D. Gorenstein,et al. The Classification of the Finite Simple Groups, Number 8 , 2018, Mathematical Surveys and Monographs.
[13] C. R. Vinroot,et al. Totally orthogonal finite simple groups , 2018, Mathematische Zeitschrift.
[14] C. Bonnafé. Sur les caractères des groupes réductifs finis à centre non connexe : applications aux groupes spéciaux linéaires et unitaires , 2018, Astérisque.
[15] B. Srinivasan,et al. Galois group action and Jordan decomposition of characters of finite reductive groups with connected center , 2018, Journal of Algebra.
[16] I. Isaacs. Characters of Solvable Groups , 2018 .
[17] A. S. Fry,et al. Fields of character values for finite special unitary groups , 2018, Pacific Journal of Mathematics.
[18] A. S. Fry. Galois automorphisms on Harish-Chandra series and Navarro’s self-normalizing Sylow $2$-subgroup conjecture , 2017, Transactions of the American Mathematical Society.
[19] G. Malle. Cuspidal characters and automorphisms , 2017, 1702.08012.
[20] Jay Taylor,et al. On Self-Normalising Sylow $2$-Subgroups in Type A , 2017, 1701.00272.
[21] M. Cabanes,et al. Inductive McKay condition for finite simple groups of type , 2016, 1612.03741.
[22] Jay Taylor. Action of automorphisms on irreducible characters of symplectic groups , 2016, Journal of Algebra.
[23] G. Malle,et al. Characters of odd degree , 2015, 1506.07690.
[24] G. Navarro,et al. Characters of relative p ' -degree over normal subgroups , 2013 .
[25] B. Späth. Inductive McKay condition in defining characteristic , 2012 .
[26] M. Liebeck,et al. Unipotent and Nilpotent Classes in Simple Algebraic Groups and Lie Algebras , 2012 .
[27] D. Testerman,et al. Linear Algebraic Groups and Finite Groups of Lie Type , 2011 .
[28] Jay Taylor. On Unipotent Supports of Reductive Groups with a Disconnected Centre , 2011, 1108.4814.
[29] Britta Spath. Inductive McKay Condition in defining Characteristic , 2010, 1009.0463.
[30] G. Lusztig. Remarks on Springer's representations , 2008, 0811.0370.
[31] G. Malle. Extensions of unipotent characters and the inductive McKay condition , 2008 .
[32] G. Navarro,et al. Brauer characters with cyclotomic field of values , 2008 .
[33] Michael T. Vaughn,et al. LIE GROUPS AND LIE ALGEBRAS , 2008, Lie Groups, Lie Algebras, and Cohomology. (MN-34), Volume 34.
[34] G. Lusztig,et al. Unipotent classes and special Weyl group representations , 2007, 0711.4287.
[35] C'edric Bonnaf'e. Quasi-Isolated Elements in Reductive Groups , 2004, math/0402276.
[36] M. Geck. Character values, Schur indices and character sheaves , 2003 .
[37] Meinolf Geck,et al. Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras , 2000 .
[38] M. Geck,et al. On the existence of a unipotent support for the irreducible characters of a finite group of Lie type , 1999 .
[39] D. Gorenstein,et al. The finite groups of Lie type , 1997 .
[40] A. Aubert,et al. Correspondance de Howe pour les groupes réductifs sur les corps finis , 1996 .
[41] D. Testerman. A1-Type Overgroups of Elements of Order p in Semisimple Algebraic Groups and the Associated Finite Groups , 1995 .
[42] Meinholf Geck. A note on harish-chandra induction , 1993 .
[43] George Lusztig,et al. Characters of reductive groups over a finite field , 1984 .
[44] Charles W. Curtis,et al. Representations of finite groups of Lie type , 1979 .
[45] H. Zassenhaus. On the spinor norm , 1962 .
[46] On Lusztig’s parametrization of characters of finite Groups of Lie type , 2019 .
[47] D. Passman,et al. Character Theory of Finite Groups , 2010 .
[48] J. Waldspurger. Une conjecture de Lusztig pour les groupes classiques , 2004 .
[49] P. Tiep,et al. Unipotent elements of finite groups of Lie type and realization fields of their complex representations , 2004 .
[50] A. Turull. The Schur Indices of the Irreducible Characters of the Special Linear Groups , 2001 .
[51] D. Gorenstein,et al. The Classification of the Finite Simple Groups , 1994 .
[52] Roger W. Carter,et al. Finite groups of Lie type: Conjugacy classes and complex characters , 1985 .
[53] G. Lusztig,et al. On the Generalized Springer Correspondence for Classical Groups , 1985 .
[54] N. Spaltenstein. On the Generalized Springer Correspondence for Exceptional Groups , 1985 .
[55] M. Geck. Finite groups of Lie type , 1985 .
[56] G. Lusztig. Representations Of Finite Chevalley Groups , 1978 .
[57] Robert Steinberg,et al. Endomorphisms of linear algebraic groups , 1968 .