GALOIS AUTOMORPHISMS AND CLASSICAL GROUPS

[1]  A. A. Schaeffer Fry Galois-equivariant McKay bijections for primes dividing q − 1 , 2021, Israel Journal of Mathematics.

[2]  A. S. Fry,et al.  The inductive McKay–Navarro conditions for the prime 2 and some groups of Lie type , 2021, Proceedings of the American Mathematical Society, Series B.

[3]  Gabriel Navarro,et al.  Characters and generation of Sylow 2-subgroups , 2021 .

[4]  A. A. Schaeffer Fry,et al.  On the inductive Alperin–McKay conditions in the maximally split case , 2020, Mathematische Zeitschrift.

[5]  A. S. Fry Galois-equivariant McKay bijections for primes dividing $q-1$ , 2020, 2007.15575.

[6]  M. Geck,et al.  The Character Theory of Finite Groups of Lie Type , 2020 .

[7]  Noelia Rizo,et al.  Galois action on the principal block and cyclic Sylow subgroups , 2019, Algebra & Number Theory.

[8]  Jay Taylor,et al.  Unitriangular shape of decomposition matrices of unipotent blocks , 2019, Annals of Mathematics.

[9]  G. Navarro,et al.  A reduction theorem for the Galois–McKay conjecture , 2019, Transactions of the American Mathematical Society.

[10]  G. Navarro,et al.  Sylow subgroups, exponents, and character values , 2019, Transactions of the American Mathematical Society.

[11]  Conghui Li An equivariant bijection between irreducible Brauer characters and weights for Sp(2n,q) , 2018, Journal of Algebra.

[12]  D. Gorenstein,et al.  The Classification of the Finite Simple Groups, Number 8 , 2018, Mathematical Surveys and Monographs.

[13]  C. R. Vinroot,et al.  Totally orthogonal finite simple groups , 2018, Mathematische Zeitschrift.

[14]  C. Bonnafé Sur les caractères des groupes réductifs finis à centre non connexe : applications aux groupes spéciaux linéaires et unitaires , 2018, Astérisque.

[15]  B. Srinivasan,et al.  Galois group action and Jordan decomposition of characters of finite reductive groups with connected center , 2018, Journal of Algebra.

[16]  I. Isaacs Characters of Solvable Groups , 2018 .

[17]  A. S. Fry,et al.  Fields of character values for finite special unitary groups , 2018, Pacific Journal of Mathematics.

[18]  A. S. Fry Galois automorphisms on Harish-Chandra series and Navarro’s self-normalizing Sylow $2$-subgroup conjecture , 2017, Transactions of the American Mathematical Society.

[19]  G. Malle Cuspidal characters and automorphisms , 2017, 1702.08012.

[20]  Jay Taylor,et al.  On Self-Normalising Sylow $2$-Subgroups in Type A , 2017, 1701.00272.

[21]  M. Cabanes,et al.  Inductive McKay condition for finite simple groups of type , 2016, 1612.03741.

[22]  Jay Taylor Action of automorphisms on irreducible characters of symplectic groups , 2016, Journal of Algebra.

[23]  G. Malle,et al.  Characters of odd degree , 2015, 1506.07690.

[24]  G. Navarro,et al.  Characters of relative p ' -degree over normal subgroups , 2013 .

[25]  B. Späth Inductive McKay condition in defining characteristic , 2012 .

[26]  M. Liebeck,et al.  Unipotent and Nilpotent Classes in Simple Algebraic Groups and Lie Algebras , 2012 .

[27]  D. Testerman,et al.  Linear Algebraic Groups and Finite Groups of Lie Type , 2011 .

[28]  Jay Taylor On Unipotent Supports of Reductive Groups with a Disconnected Centre , 2011, 1108.4814.

[29]  Britta Spath Inductive McKay Condition in defining Characteristic , 2010, 1009.0463.

[30]  G. Lusztig Remarks on Springer's representations , 2008, 0811.0370.

[31]  G. Malle Extensions of unipotent characters and the inductive McKay condition , 2008 .

[32]  G. Navarro,et al.  Brauer characters with cyclotomic field of values , 2008 .

[33]  Michael T. Vaughn,et al.  LIE GROUPS AND LIE ALGEBRAS , 2008, Lie Groups, Lie Algebras, and Cohomology. (MN-34), Volume 34.

[34]  G. Lusztig,et al.  Unipotent classes and special Weyl group representations , 2007, 0711.4287.

[35]  C'edric Bonnaf'e Quasi-Isolated Elements in Reductive Groups , 2004, math/0402276.

[36]  M. Geck Character values, Schur indices and character sheaves , 2003 .

[37]  Meinolf Geck,et al.  Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras , 2000 .

[38]  M. Geck,et al.  On the existence of a unipotent support for the irreducible characters of a finite group of Lie type , 1999 .

[39]  D. Gorenstein,et al.  The finite groups of Lie type , 1997 .

[40]  A. Aubert,et al.  Correspondance de Howe pour les groupes réductifs sur les corps finis , 1996 .

[41]  D. Testerman A1-Type Overgroups of Elements of Order p in Semisimple Algebraic Groups and the Associated Finite Groups , 1995 .

[42]  Meinholf Geck A note on harish-chandra induction , 1993 .

[43]  George Lusztig,et al.  Characters of reductive groups over a finite field , 1984 .

[44]  Charles W. Curtis,et al.  Representations of finite groups of Lie type , 1979 .

[45]  H. Zassenhaus On the spinor norm , 1962 .

[46]  On Lusztig’s parametrization of characters of finite Groups of Lie type , 2019 .

[47]  D. Passman,et al.  Character Theory of Finite Groups , 2010 .

[48]  J. Waldspurger Une conjecture de Lusztig pour les groupes classiques , 2004 .

[49]  P. Tiep,et al.  Unipotent elements of finite groups of Lie type and realization fields of their complex representations , 2004 .

[50]  A. Turull The Schur Indices of the Irreducible Characters of the Special Linear Groups , 2001 .

[51]  D. Gorenstein,et al.  The Classification of the Finite Simple Groups , 1994 .

[52]  Roger W. Carter,et al.  Finite groups of Lie type: Conjugacy classes and complex characters , 1985 .

[53]  G. Lusztig,et al.  On the Generalized Springer Correspondence for Classical Groups , 1985 .

[54]  N. Spaltenstein On the Generalized Springer Correspondence for Exceptional Groups , 1985 .

[55]  M. Geck Finite groups of Lie type , 1985 .

[56]  G. Lusztig Representations Of Finite Chevalley Groups , 1978 .

[57]  Robert Steinberg,et al.  Endomorphisms of linear algebraic groups , 1968 .