Data-Driven Color Manifolds

Color selection is required in many computer graphics applications, but can be tedious, as 1D or 2D user interfaces are employed to navigate in a 3D color space. Until now the problem was considered a question of designing general color spaces with meaningful (e.g., perceptual) parameters. In this work, we show how color selection usability improves by applying 1D or 2D color manifolds that predict the most likely change of color in a specific context. A typical use-case is manipulating the color of a banana; instead of presenting a 2D+1D RGB, CIE Lab, or HSV widget, our approach presents a simple 1D slider that captures the most likely change for this context. Technically, for each context, we learn a lower-dimensional manifold with varying density from labeled Internet examples. We demonstrate the increase in task performance of color selection in a user study.

[1]  Daniel Cohen-Or,et al.  Image Appearance Exploration by Model‐Based Navigation , 2009, Comput. Graph. Forum.

[2]  Teuvo Kohonen,et al.  The self-organizing map , 1990 .

[3]  Karl R Gegenfurtner,et al.  Color appearance of familiar objects: effects of object shape, texture, and illumination changes. , 2008, Journal of vision.

[4]  Alexei A. Efros,et al.  Using Color Compatibility for Assessing Image Realism , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[5]  Adam Finkelstein,et al.  Where do people draw lines , 2008, SIGGRAPH 2008.

[6]  Yizhou Yu,et al.  Example-based image color and tone style enhancement , 2011, SIGGRAPH 2011.

[7]  Yizhou Yu,et al.  Example-based image color and tone style enhancement , 2011, ACM Trans. Graph..

[8]  Wojciech Matusik,et al.  A data-driven reflectance model , 2003, ACM Trans. Graph..

[9]  M. Werman,et al.  Color lines: image specific color representation , 2004, CVPR 2004.

[10]  Roy S. Berns,et al.  A review of principal component analysis and its applications to color technology , 2005 .

[11]  Michael C. Hout,et al.  Multidimensional Scaling , 2003, Encyclopedic Dictionary of Archaeology.

[12]  Cordelia Schmid,et al.  Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[13]  Aaron Hertzmann,et al.  Color compatibility from large datasets , 2011, SIGGRAPH 2011.

[14]  Krista A. Ehinger,et al.  SUN database: Large-scale scene recognition from abbey to zoo , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[15]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[16]  Paul A. Beardsley,et al.  Design galleries: a general approach to setting parameters for computer graphics and animation , 1997, SIGGRAPH.

[17]  Adam Finkelstein,et al.  Where do people draw lines? , 2008, ACM Trans. Graph..

[18]  H. Shum,et al.  Appearance manifolds for modeling time-variant appearance of materials , 2006, SIGGRAPH 2006.

[19]  Baining Guo,et al.  Image‐based Material Weathering , 2008, Comput. Graph. Forum.

[20]  Aaron Hertzmann,et al.  Color compatibility from large datasets , 2011, ACM Trans. Graph..

[21]  Manuel M. Oliveira,et al.  Domain transform for edge-aware image and video processing , 2011, SIGGRAPH 2011.

[22]  Trevor Darrell,et al.  Caffe: Convolutional Architecture for Fast Feature Embedding , 2014, ACM Multimedia.

[23]  Chun Chen,et al.  Data-driven image color theme enhancement , 2010, SIGGRAPH 2010.

[24]  Markus H. Gross,et al.  Fast and Stable Color Balancing for Images and Augmented Reality , 2012, 2012 Second International Conference on 3D Imaging, Modeling, Processing, Visualization & Transmission.

[25]  S. Siegel,et al.  Nonparametric Statistics for the Behavioral Sciences , 2022, The SAGE Encyclopedia of Research Design.

[26]  Daniel Cohen-Or,et al.  Color harmonization , 2006, ACM Trans. Graph..

[27]  Manuel Menezes de Oliveira Neto,et al.  Domain transform for edge-aware image and video processing , 2011, ACM Trans. Graph..

[28]  Harry Wechsler,et al.  Color image compression using PCA and backpropagation learning , 2000, Pattern Recognit..

[29]  John C. Beatty,et al.  An experimental comparison of RGB, YIQ, LAB, HSV, and opponent color models , 1987, TOGS.

[30]  Anil K. Jain,et al.  Face Detection in Color Images , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  Michael H. Brill,et al.  Color appearance models , 1998 .

[32]  Mahdi Nezamabadi,et al.  Color Appearance Models , 2014, J. Electronic Imaging.

[33]  V. Yohai,et al.  Robust Statistics: Theory and Methods , 2006 .

[34]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[35]  Ingmar Lissner,et al.  How Perceptually Uniform Can a Hue Linear Color Space Be? , 2010, CIC.

[36]  Holly E. Rushmeier,et al.  A Scalable Parallel Algorithm for Self-Organizing Maps with Applications to Sparse Data Mining Problems , 1999, Data Mining and Knowledge Discovery.

[37]  Teuvo Kohonen,et al.  The self-organizing map , 1990, Neurocomputing.

[38]  Sarah A. Douglas,et al.  Model and representation: the effect of visual feedback on human performance in a color picker interface , 1999, TOGS.

[39]  Noah Snavely,et al.  OpenSurfaces , 2013, ACM Trans. Graph..

[40]  Michael Werman,et al.  Color lines: image specific color representation , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..