Structural and biochemical characterisation of Archaeoglobus fulgidus esterase reveals a bound CoA molecule in the vicinity of the active site

A new carboxyl esterase, AF-Est2, from the hyperthermophilic archaeon Archaeoglobus fulgidus has been cloned, over-expressed in Escherichia coli and biochemically and structurally characterized. The enzyme has high activity towards short- to medium-chain p-nitrophenyl carboxylic esters with optimal activity towards the valerate ester. The AF-Est2 has good solvent and pH stability and is very thermostable, showing no loss of activity after incubation for 30 min at 80 °C. The 1.4 Å resolution crystal structure of AF-Est2 reveals Coenzyme A (CoA) bound in the vicinity of the active site. Despite the presence of CoA bound to the AF-Est2 this enzyme has no CoA thioesterase activity. The pantetheine group of CoA partially obstructs the active site alcohol pocket suggesting that this ligand has a role in regulation of the enzyme activity. A comparison with closely related α/β hydrolase fold enzyme structures shows that the AF-Est2 has unique structural features that allow CoA binding. A comparison of the structure of AF-Est2 with the human carboxyl esterase 1, which has CoA thioesterase activity, reveals that CoA is bound to different parts of the core domain in these two enzymes and approaches the active site from opposite directions.

[1]  Liisa Holm,et al.  Dali server: conservation mapping in 3D , 2010, Nucleic Acids Res..

[2]  R. Fleischmann,et al.  The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus , 1997, Nature.

[3]  Kevin Cowtan,et al.  Recent developments in classical density modification , 2010, Acta crystallographica. Section D, Biological crystallography.

[4]  Wolfgang Zimmermann,et al.  Synthetic polyester-hydrolyzing enzymes from thermophilic actinomycetes. , 2014, Advances in applied microbiology.

[5]  H. Schwab,et al.  EstB from Burkholderia gladioli: A novel esterase with a β‐lactamase fold reveals steric factors to discriminate between esterolytic and β‐lactam cleaving activity , 2002, Protein science : a publication of the Protein Society.

[6]  Fei Long,et al.  The PDB_REDO server for macromolecular structure model optimization , 2014, IUCrJ.

[7]  T. Panda,et al.  Production and applications of esterases , 2005, Applied Microbiology and Biotechnology.

[8]  H. Hecht,et al.  Structural investigation of the cofactor-free chloroperoxidases. , 1998, Journal of molecular biology.

[9]  Peter Kuhn,et al.  Multisite promiscuity in the processing of endogenous substrates by human carboxylesterase 1. , 2006, Journal of molecular biology.

[10]  Eunsoo Hong,et al.  Improved enantioselectivity of thermostable esterase from Archaeoglobus fulgidus toward (S)-ketoprofen ethyl ester by directed evolution and characterization of mutant esterases , 2015, Applied Microbiology and Biotechnology.

[11]  A. H. Wang,et al.  Structure of the alkalohyperthermophilic Archaeoglobus fulgidus lipase contains a unique C-terminal domain essential for long-chain substrate binding. , 2009, Journal of molecular biology.

[12]  Mitchell D. Miller,et al.  Functional and structural characterization of a thermostable acetyl esterase from Thermotoga maritima , 2012, Proteins.

[13]  Irene T Weber,et al.  Covalent reaction intermediate revealed in crystal structure of the Geobacillus stearothermophilus carboxylesterase Est30. , 2004, Journal of molecular biology.

[14]  S J Wodak,et al.  SFCHECK: a unified set of procedures for evaluating the quality of macromolecular structure-factor data and their agreement with the atomic model. , 1999, Acta crystallographica. Section D, Biological crystallography.

[15]  X. Duan,et al.  Structural insights into the substrate specificity of two esterases from the thermophilic Rhizomucor miehei , 2015, Journal of Lipid Research.

[16]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[17]  M. Noble,et al.  Structure of HsaD, a steroid-degrading hydrolase, from Mycobacterium tuberculosis , 2007, Acta crystallographica. Section F, Structural biology and crystallization communications.

[18]  Thierry Hotelier,et al.  ESTHER, the database of the α/β-hydrolase fold superfamily of proteins: tools to explore diversity of functions , 2012, Nucleic Acids Res..

[19]  G. Manco,et al.  The crystal structure of a hyper-thermophilic carboxylesterase from the archaeon Archaeoglobus fulgidus. , 2001, Journal of molecular biology.

[20]  Quanshun Li,et al.  Biocatalytic Synthesis of Poly(δ-Valerolactone) Using a Thermophilic Esterase from Archaeoglobus fulgidus as Catalyst , 2012, International journal of molecular sciences.

[21]  N. Pannu,et al.  REFMAC5 for the refinement of macromolecular crystal structures , 2011, Acta crystallographica. Section D, Biological crystallography.

[22]  F. Molinari,et al.  Esterases as stereoselective biocatalysts. , 2015, Biotechnology advances.

[23]  Robert A. Copeland,et al.  Evaluation of enzyme inhibitors in drug discovery , 2013 .

[24]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[25]  I. Weber,et al.  Crystal structure of the Geobacillus stearothermophilus carboxylesterase Est55 and its activation of prodrug CPT-11. , 2007, Journal of molecular biology.

[26]  Redesign of human carbonic anhydrase II for increased esterase activity and specificity towards esters with long acyl chains. , 2006, Biochimica et biophysica acta.

[27]  E. Birney,et al.  Pfam: the protein families database , 2013, Nucleic Acids Res..

[28]  Randy J. Read,et al.  Overview of the CCP4 suite and current developments , 2011, Acta crystallographica. Section D, Biological crystallography.

[29]  J. Cooper,et al.  The structure of the C-C bond hydrolase MhpC provides insights into its catalytic mechanism. , 2005, Journal of molecular biology.

[30]  Joel L. Sussman,et al.  The α/β hydrolase fold , 1992 .

[31]  C. Rizzi,et al.  Cell vitality and esterase activity of Saccharomyces cerevisiae is affected by increasing calcium concentration , 2003 .

[32]  Garib N. Murshudov,et al.  JLigand: a graphical tool for the CCP4 template-restraint library , 2012, Acta crystallographica. Section D, Biological crystallography.

[33]  J. Thornton,et al.  Integrating Structure, Bioinformatics, and Enzymology to Discover Function , 2003, Journal of Biological Chemistry.

[34]  J. Schrag,et al.  Lipases and alpha/beta hydrolase fold. , 1997, Methods in enzymology.

[35]  Robert A Copeland,et al.  Evaluation of enzyme inhibitors in drug discovery. A guide for medicinal chemists and pharmacologists. , 2005, Methods of biochemical analysis.

[36]  J. van der Oost,et al.  Characterization and structural modeling of a new type of thermostable esterase from Thermotoga maritima , 2007, The FEBS journal.

[37]  Robin L. Owen,et al.  Characterization of a Carbon-Carbon Hydrolase from Mycobacterium tuberculosis Involved in Cholesterol Metabolism* , 2009, The Journal of Biological Chemistry.

[38]  J. Littlechild,et al.  The crystal structure of a (-) gamma-lactamase from an Aureobacterium species reveals a tetrahedral intermediate in the active site. , 2004, Journal of molecular biology.

[39]  R. Kazlauskas,et al.  Mapping the substrate selectivity and enantioselectivity of esterases from thermophiles , 2004 .

[40]  J. Littlechild,et al.  Structural studies of a thermophilic esterase from a new Planctomycetes species, Thermogutta terrifontis , 2015, The FEBS journal.

[41]  S. McNicholas,et al.  Presenting your structures: the CCP4mg molecular-graphics software , 2011, Acta crystallographica. Section D, Biological crystallography.

[42]  C Upton,et al.  A new family of lipolytic enzymes? , 1995, Trends in biochemical sciences.

[43]  Servé W. M. Kengen,et al.  Carboxylic ester hydrolases from hyperthermophiles , 2009, Extremophiles.

[44]  Graeme Winter,et al.  Decision making in xia2 , 2013, Acta crystallographica. Section D, Biological crystallography.

[45]  J. Littlechild,et al.  Natural methods of protein stabilization: thermostable biocatalysts. , 2007, Biochemical Society transactions.

[46]  D. Blow,et al.  Role of a Buried Acid Group in the Mechanism of Action of Chymotrypsin , 1969, Nature.

[47]  J. Littlechild Enzymes from Extreme Environments and Their Industrial Applications , 2015, Front. Bioeng. Biotechnol..

[48]  J. Schrag,et al.  Switching catalysis from hydrolysis to perhydrolysis in Pseudomonas fluorescens esterase. , 2010, Biochemistry.

[49]  J. Littlechild,et al.  The atomic-resolution structure of a novel bacterial esterase. , 2000, Structure.

[50]  J. Bains,et al.  A product analog bound form of 3-oxoadipate-enol-lactonase (PcaD) reveals a multifunctional role for the divergent cap domain. , 2011, Journal of molecular biology.

[51]  S. Kanaya,et al.  Structure and stability of a thermostable carboxylesterase from the thermoacidophilic archaeon Sulfolobus tokodaii , 2012, The FEBS journal.

[52]  W. Zimmermann,et al.  Hydrolysis of cyclic poly(ethylene terephthalate) trimers by a carboxylesterase from Thermobifida fusca KW3 , 2010, Applied Microbiology and Biotechnology.

[53]  S. d'Auria,et al.  Cloning, overexpression, and properties of a new thermophilic and thermostable esterase with sequence similarity to hormone-sensitive lipase subfamily from the archaeon Archaeoglobus fulgidus. , 2000, Archives of biochemistry and biophysics.

[54]  J. Edsall,et al.  Purification and properties of human erythrocyte carbonic anhydrases. , 1966, The Journal of biological chemistry.

[55]  B. Zerner,et al.  Reassessment of Ellman's reagent. , 1983, Methods in enzymology.

[56]  W. J. Quax,et al.  Development of a newBacillus carboxyl esterase for use in the resolution of chiral drugs , 1994 .

[57]  Philip R. Evans,et al.  How good are my data and what is the resolution? , 2013, Acta crystallographica. Section D, Biological crystallography.

[58]  Seungbum Kim,et al.  Cloning and characterization of thermostable esterase from Archaeoglobus fulgidus , 2008, The Journal of Microbiology.

[59]  A. Klibanov Improving Enzymes by Using them in Organic Solvents , 2001 .

[60]  G. Manco,et al.  Functional and structural features of the oxyanion hole in a thermophilic esterase from Alicyclobacillus acidocaldarius , 2007, Proteins.