Review: Hydraulic head measurements—new technologies, classic pitfalls

The hydraulic head is one of the most important metrics in hydrogeology as it underlies the interpretation of groundwater flow, the quantification of aquifer properties and the calibration of flow models. Heads are determined based on water-level measurements in wells and piezometers. Despite the importance of hydraulic head data, standard textbooks used in groundwater curricula provide relatively little discussion of the appropriate measurement procedures. This paper presents a review of the literature dealing with the determination of hydraulic heads, and aims to provide quantitative guidance on the likely sources of error and when these can be expected to become important. The most common measurement procedures are discussed and the main sources of error are identified, i.e. those related to (1) the measurement instruments, (2) the conversion from pressure to heads, (3) time lag effects, and (4) observation well defects. It is argued that heads should be determined following well-defined guidelines, and that it should become standard practice in hydrogeology to provide quantitative estimates of the measurement error.RésuméLe niveau piézométrique est l’un des plus importants paramètres de l’hydrogéologie car il est à la base de l’interprétation de l’écoulement souterrain, de la quantification des propriétés de l’aquifère et du paramétrage des modèles d’écoulement. La détermination des niveaux piézométriques est basée sur la mesure du niveau de l’eau dans les puits et dans les piézomètres. Malgré l’importance des données piézométriques, les ouvrages standards utilisés dans les programmes d’étude de nappe fournissent relativement peu de commentaires sur les procédures appropriées de mesure. Cet article présente une revue de la littérature traitant de la mesure des niveaux piézométriques et vise à fournir un guide quantitatif des sources d’erreur possibles et des cas où on peut s’attendre à ce qu’elles deviennent importantes. Les protocoles de mesures les plus communs sont discutés et les principales sources d’erreur sont identifiées, à savoir celles relatives (1) aux instruments de mesures, (2) à la conversion de pression en niveau piézométrique, (3) aux effets de l’inertie, et (4) aux défectuosités du puits d’observation. On en déduit que les niveaux piézométriques devraient être mesurés suivant un protocole bien défini et que fournir une estimation quantitative de l’erreur de mesure devrait devenir une pratique courante en hydrogéologie.ResumenLa carga hidráulica es una de las métricas más importantes en hidrogeología porque subyace a la interpretación del flujo de agua subterránea, la cuantificación de las propiedades del acuífero y la calibración de modelos de flujo. Las cargas están determinadas basadas en mediciones de nivel de agua en pozos y piezómetros. A pesar de la importancia de los datos de la carga hidráulica, los libros de texto estándar usados en la currícula de agua subterránea proveen una relativamente escasa discusión sobre los procedimientos apropiados de medición. Este trabajo presenta una revisión de la literatura que trata la determinación de las cargas hidráulicas, y pretende proveer una guía cuantitativa sobre las posibles fuentes de error y cuando estas pueden esperar que se conviertan en importantes. Se discuten los procedimientos de medición más comunes y se identifican las principales fuentes de error, es decir, aquellos relacionadas a (1) los instrumentos de medición, (2) la conversión de presión a cargas, (3) efectos del tiempo de retardo, y (4) los defectos de los pozos de observación. Se argumenta que las cargas deben ser medidas siguiendo guías bien definidas, y que debería convertirse en una práctica habitual en hidrogeología proveer estimaciones cuantitativas del error de las medidas.ResumoA carga hidráulica é uma das grandezas mais importantes em hidrogeologia, uma vez que está na base da interpretação do escoamento da água subterrânea, da quantificação das propriedades dos aquíferos e da calibração de modelos de fluxo. A carga é determinada a partir de medições dos níveis de água em poços e piezómetros. Apesar da importância dos dados de carga hidráulica, os livros didáticos correntes que são usados nos curricula sobre água subterrânea proporcionam relativamente pouca discussão sobre os procedimentos de medição adequados. Este artigo apresenta uma revisão da literatura que trata da determinação da carga hidráulica e tem como objetivo fornecer orientação quantitativa sobre prováveis origens de erros e sobre quando se pode esperar que estes se tornem importantes. São discutidos os procedimentos de medição mais comuns e identificam-se as principais origens de erro, i.e. as que se relacionam com (1) os instrumentos de medida, (2) a conversão de pressão em carga, (3) os efeitos de diferimento temporal e (4) os defeitos nos poços de observação. Argumenta-se que a carga deveria ser medida segundo normas bem definidas e que deveria ser tornada prática padrão em hidrogeologia fornecer estimativas quantitativas dos erros de medição.

[1]  R. Mackley,et al.  A Wet/Wet Differential Pressure Sensor for Measuring Vertical Hydraulic Gradient , 2010, Ground water.

[2]  David M. Nielsen,et al.  Practical Handbook of Ground-Water Monitoring , 1991 .

[3]  C. Beek Cause and prevention of clogging of wells abstracting groundwater from unconsolidated aquifers , 2011 .

[4]  Mark Bakker,et al.  Modeling Time Series of Ground Water Head Fluctuations Subjected to Multiple Stresses , 2008, Ground water.

[5]  D. Nielsen,et al.  The Essential Handbook of Ground-Water Sampling , 2006 .

[6]  Mary P Anderson,et al.  Heat as a Ground Water Tracer , 2005, Ground water.

[7]  Fletcher G. Driscoll,et al.  Groundwater and Wells , 1986 .

[8]  John Dunnicliff,et al.  Geotechnical Instrumentation for Monitoring Field Performance , 1988 .

[9]  M. Price Barometric water-level fluctuations and their measurement using vented and non-vented pressure transducers , 2009 .

[10]  Ian L Turner Monitoring groundwater dynamics in the littoral zone at seasonal, storm, tide and swash frequencies , 1998 .

[11]  Volker Eitner,et al.  Standardised Methods for Sampling by Drilling and Excavation and for Groundwater Measurements , 2004 .

[12]  Jr. Fa Spane Effects of Barometric Fluctuations on Well Water-Level Measurements and Aquifer Test Data , 1999 .

[13]  Hr Sweet,et al.  Water Level Monitoring—Achievable Accuracy and Precision , 1990 .

[14]  S. Bachu,et al.  Equations of state for basin geofluids: algorithm review and intercomparison for brines , 2002 .

[15]  N. J. Lusczynski Head and flow of ground water of variable density , 1961 .

[16]  V. J. Latkovich,et al.  Proceedings of a U.S. Geological Survey workshop on the application and needs of submersible pressure sensors, Denver, Colorado, June 7-10, 1994 , 1994 .

[17]  D. Rosenberry,et al.  Field Techniques for Estimating Water Fluxes Between Surface Water and Ground Water , 2014 .

[18]  C. Tiedeman,et al.  Effective Groundwater Model Calibration: With Analysis of Data, Sensitivities, Predictions, and Uncertainty , 2007 .

[19]  A. Baird,et al.  Validation of a Boussinesq model of beach ground water behaviour , 1998 .

[20]  P. Cook,et al.  Using groundwater levels to estimate recharge , 2002 .

[21]  V. Post Electrical Conductivity as a Proxy for Groundwater Density in Coastal Aquifers , 2012, Ground water.

[22]  James Sorensen,et al.  Water Level Monitoring Pressure Transducers—A Need for Industry‐Wide Standards , 2011 .

[23]  Donald O. Rosenberry Effect of Sensor Error on Interpretation of Long‐Term Water‐Level Data , 1990 .

[24]  Jessica R. Meyer,et al.  Detailed hydraulic head profiles as essential data for defining hydrogeologic units in layered fractured sedimentary rock , 2008 .

[25]  I. Winograd Noninstrumental Factors Affecting Measurement of Static Water Levels in Deeply Buried Aquifers and Aquitards, Nevada Test Sitea , 1970 .

[26]  F. Reinstorf,et al.  Measuring methods for groundwater – surface water interactions: a review , 2006 .

[27]  Tina G. Butcher,et al.  NIST HB 44 (2014) Specifications, Tolerances, and Other Technical Requirements for Weighing and Measuring Devices | NIST , 2011 .

[28]  T. Baldock,et al.  Measurements and modeling of swash-induced pressure gradients in the surface layers of a sand beach , 2001 .

[29]  G. Kruseman,et al.  Analysis and Evaluation of Pumping Test Data , 1983 .

[30]  Christophe Lambiel,et al.  Contribution of real‐time kinematic GPS in the study of creeping mountain permafrost: examples from the Western Swiss Alps , 2004 .

[31]  J. Black,et al.  Observation well response time and its effect upon aquifer test results , 1977 .

[32]  M. J. Hvorslev Time lag and soil permeability in ground-water observations , 1951 .

[33]  W. Cunningham,et al.  Groundwater Technical Procedures of the U.S. Geological Survey , 2014 .

[34]  C. D. McElwee,et al.  Effects of Measurement Error on Horizontal Hydraulic Gradient Estimates , 2007, Ground water.

[35]  Joseph D. Ritchey Electronic Sensing Devices Used for In Situ Ground Water Monitoring , 1986 .

[36]  M. Garber,et al.  Methods of measuring water levels in deep wells , 1969 .

[37]  D. Nielsen,et al.  Design and Installation of Ground-Water Monitoring Wells , 2005 .

[38]  Todd C. Rasmussen,et al.  Identifying and Removing Barometric Pressure Effects in Confined and Unconfined Aquifers , 1997 .

[39]  D. Sokol Position and fluctuations of water level in wells perforated in more than one aquifer , 1963 .

[40]  Craig Simmons,et al.  Using Hydraulic Head Measurements in Variable‐Density Ground Water Flow Analyses , 2007, Ground water.

[41]  Donald O. Rosenberry,et al.  Use of submersible pressure transducers in water-resources investigations , 2004 .

[42]  F. Spane Considering barometric pressure in groundwater flow investigations , 2002 .

[43]  C. Keller,et al.  Casing Leakage in Monitoring Wells: Detection, Confirmation, and Prevention , 1993 .

[44]  Steven P Loheide,et al.  Noise in pressure transducer readings produced by variations in solar radiation. , 2004, Ground water.

[45]  L. S. Pereira,et al.  Crop evapotranspiration : guidelines for computing crop water requirements , 1998 .

[46]  S. Silliman,et al.  The Effect of Measurement Error on Estimating the Hydraulic Gradient in Three Dimensions , 2000 .

[47]  M. Nicholl,et al.  Well Design to Reduce Barometric Pressure Effects on Water Level Data in Unconfined Aquifers , 2004 .

[48]  E. J. Kennedy Levels at streamflow gaging stations , 1988 .

[49]  M. Cuthbert,et al.  A Wet/Wet Differential Pressure Sensor for Measuring Vertical Hydraulic Gradient , 2011, Ground water.

[50]  F. Molz,et al.  Implications of Observed and Simulated Ambient Flow in Monitoring Wells , 2001, Ground water.

[51]  Daniel L. McLaughlin,et al.  Thermal artifacts in measurements of fine‐scale water level variation , 2011 .

[52]  C. Tiedeman,et al.  Effective Groundwater Model Calibration , 2007 .