Erasure List-Decodable Codes From Random and Algebraic Geometry Codes

Erasure list decoding was introduced to correct a larger number of erasures by outputting a list of possible candidates. In this paper, we consider both random linear codes and algebraic geometry codes for list decoding from erasures. The contributions of this paper are twofold. First, for arbitrary 0 <; R <; 1 and ϵ > 0 (R and ϵ are independent), we show that with high probability a q-ary random linear code of rate R is an erasure list-decodable code with constant list size qO(1/ϵ) that can correct a fraction 1 - R - ϵ of erasures, i.e., a random linear code achieves the information-theoretic optimal tradeoff between information rate and fraction of erasures. Second, we show that algebraic geometry codes are good erasure list-decodable codes. Precisely speaking, a q-ary algebraic geometry code of rate R from the Garcia-Stichtenoth tower can correct 1 - R - (1/√q - 1) + (1/q) - ϵ fraction of erasures with list size O(1/ϵ). This improves the Johnson bound for erasures applied to algebraic geometry codes. Furthermore, list decoding of these algebraic geometry codes can be implemented in polynomial time. Note that the code alphabet size q in this paper is constant and independent of ϵ.

[1]  Venkatesan Guruswami,et al.  List decoding algorithms for certain concatenated codes , 2000, STOC '00.

[2]  Venkatesan Guruswami,et al.  List decoding from erasures: bounds and code constructions , 2001, IEEE Trans. Inf. Theory.

[3]  Venkatesan Guruswami,et al.  List decoding of error correcting codes , 2001 .

[4]  Atri Rudra,et al.  Two Theorems on List Decoding - (Extended Abstract) , 2010, APPROX-RANDOM.

[5]  Simon Litsyn,et al.  New Upper Bounds on Generalized Weights , 1999, IEEE Trans. Inf. Theory.

[6]  H. Stichtenoth,et al.  A tower of Artin-Schreier extensions of function fields attaining the Drinfeld-Vladut bound , 1995 .

[7]  Klaus Jansen,et al.  Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques , 2006, Lecture Notes in Computer Science.

[8]  Tor Helleseth,et al.  Bounds on the minimum support weights , 1995, IEEE Trans. Inf. Theory.

[9]  Ron M. Roth,et al.  Introduction to Coding Theory , 2019, Discrete Mathematics.

[10]  Vladimir M. Blinovsky,et al.  List decoding , 1992, Discret. Math..

[11]  Chaoping Xing,et al.  Coding Theory: Index , 2004 .

[12]  Henning Stichtenoth,et al.  Algebraic function fields and codes , 1993, Universitext.

[13]  Victor K.-W. Wei,et al.  Generalized Hamming weights for linear codes , 1991, IEEE Trans. Inf. Theory.

[14]  Venkatesan Guruswami,et al.  Linear-Time List Decoding in Error-Free Settings: (Extended Abstract) , 2004, ICALP.

[15]  Ruud Pellikaan,et al.  On the gonality of curves, abundant codes and decoding , 1992 .

[16]  Gérard D. Cohen,et al.  Upper bounds on generalized distances , 1994, IEEE Trans. Inf. Theory.

[17]  Venkatesan Guruswami,et al.  Combinatorial Limitations of Average-Radius List Decoding , 2013, APPROX-RANDOM.

[18]  Madhu Sudan List decoding: algorithms and applications , 2000, SIGA.

[19]  Peter Elias,et al.  List decoding for noisy channels , 1957 .

[20]  Venkatesan Guruswami,et al.  Near-optimal linear-time codes for unique decoding and new list-decodable codes over smaller alphabets , 2002, STOC '02.

[21]  Yuan Zhou Introduction to Coding Theory , 2010 .

[22]  Chaoping Xing,et al.  Coding Theory: A First Course , 2004 .

[23]  H. Stichtenoth,et al.  A low complexity algorithm for the construction of algebraic geometric codes better than the Gilbert-Varshamov bound , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).

[25]  Venkatesan Guruswami,et al.  Combinatorial Limitations of Average-Radius List-Decoding , 2012, IEEE Transactions on Information Theory.