Bayesian and Hybrid Cramér–Rao Bounds for the Carrier Recovery Under Dynamic Phase Uncertain Channels

In this paper, we study Bayesian and hybrid Cramér-Rao bounds (BCRB and HCRB) for the code-aided (CA), the data-aided (DA), and the non-data-aided (NDA) dynamical phase estimation of QAM modulated signals. We address the bounds derivation for both the offline scenario, for which the whole observation frame is used, and the online which only takes into account the current and the previous observations. For the CA scenario we show that the computation of the Bayesian information matrix (BIM) and of the hybrid information matrix (HIM) is NP hard. We then resort to the belief-propagation (BP) algorithm or to the Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm to obtain some approximate values. Moreover, in order to avoid the calculus of the inverse of the BIM and of the HIM, we present some closed form expressions for the various CRBs, which greatly reduces the computation complexity. Finally, some simulations allow us to compare the possible improvements enabled by the offline and the CA scenarios.

[1]  Heidi Steendam,et al.  The sensitivity of downlink MC-DS-CDMA to carrier frequency offsets , 2001, IEEE Communications Letters.

[2]  Umberto Mengali,et al.  Synchronization Techniques for Digital Receivers , 1997, Applications of Communications Theory.

[3]  Benoit Geller,et al.  Near Optimum Low Complexity Smoothing Loops for Dynamical Phase Estimation—Application to BPSK Modulated Signals , 2009, IEEE Transactions on Signal Processing.

[4]  Heidi Steendam,et al.  Carrier and Clock Recovery in (Turbo-) Coded Systems: Cramér-Rao Bound and Synchronizer Performance , 2005, EURASIP J. Adv. Signal Process..

[5]  M.P. Fitz,et al.  Single frequency estimation with non-uniform sampling , 1996, Conference Record of The Thirtieth Asilomar Conference on Signals, Systems and Computers.

[6]  Luc Vandendorpe,et al.  Turbo-Information Processing: Algorithms, Implementations & Applications , 2007 .

[7]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[8]  Robert Boorstyn,et al.  Single tone parameter estimation from discrete-time observations , 1974, IEEE Trans. Inf. Theory.

[9]  M. Moeneclaey,et al.  True Cramer-Rao Bound for Estimating Synchronization Parameters from a Linearly Modulated Bandpass Signal with Unknown Data Symbols , 2007, 2007 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing.

[10]  Heidi Steendam,et al.  The Cramer-Rao bound for phase estimation from coded linearly modulated signals , 2003, IEEE Communications Letters.

[11]  Heidi Steendam,et al.  The true Cramer-Rao bound for phase-independent carrier frequency estimation from a PSK signal , 2002, Global Telecommunications Conference, 2002. GLOBECOM '02. IEEE.

[12]  R. Fisher,et al.  On the Mathematical Foundations of Theoretical Statistics , 1922 .

[13]  A. Hasman,et al.  Probabilistic reasoning in intelligent systems: Networks of plausible inference , 1991 .

[14]  Dariush Divsalar,et al.  Turbo codes for PCS applications , 1995, Proceedings IEEE International Conference on Communications ICC '95.

[15]  Heidi Steendam,et al.  The true Cramer-Rao bound for estimating the carrier phase of a convolutionally encoded PSK signal , 2002 .

[16]  A. Demir,et al.  Phase noise in oscillators: a unifying theory and numerical methods for characterization , 2000 .

[17]  H. Bruneel,et al.  Carrier phase and frequency estimation for pilot-symbol assisted transmission: bounds and algorithms , 2005, IEEE Transactions on Signal Processing.

[18]  A. Gualtierotti H. L. Van Trees, Detection, Estimation, and Modulation Theory, , 1976 .

[19]  Heidi Steendam,et al.  Performance bounds in synchronization for low signal-to-noise ratios , 2001 .

[20]  William Moran,et al.  Cramer-Rao lower bounds for QAM phase and frequency estimation , 2001, IEEE Trans. Commun..

[21]  John Cocke,et al.  Optimal decoding of linear codes for minimizing symbol error rate (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[22]  Luc Vandendorpe,et al.  Code-Aided Turbo Synchronization , 2007, Proceedings of the IEEE.

[23]  Benoit Geller,et al.  On the Hybrid Cramér Rao Bound and Its Application to Dynamical Phase Estimation , 2008, IEEE Signal Processing Letters.

[24]  Heidi Steendam,et al.  Low-SNR limit of the Cramer-Rao bound for estimating the carrier phase and frequency of a PAM, PSK, or QAM waveform , 2001, IEEE Communications Letters.

[25]  Judea Pearl,et al.  Reverend Bayes on Inference Engines: A Distributed Hierarchical Approach , 1982, AAAI.

[26]  Heidi Steendam,et al.  The impact of the observation model on the Cramer-Rao bound for carrier phase and frequency synchronization , 2003, IEEE International Conference on Communications, 2003. ICC '03..

[27]  Benoit Geller,et al.  Bayesian and hybrid Cramer-Rao bounds for QAM dynamical phase estimation , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[28]  Pierre-Olivier Amblard,et al.  Phase tracking: what do we gain from optimality? Particle filtering versus phase-locked loops , 2003, Signal Process..

[29]  大西 仁,et al.  Pearl, J. (1988, second printing 1991). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan-Kaufmann. , 1994 .

[30]  Marc Moeneclaey,et al.  On the true and the modified Cramer-Rao bounds for the estimation of a scalar parameter in the presence of nuisance parameters , 1998, IEEE Trans. Commun..

[31]  Heidi Steendam,et al.  Pilot-symbol assisted carrier synchronization: Cramer-Rao bound and synchronization performance , 2003 .

[32]  Benoit Geller,et al.  Approximate Expressions for Cramer-Rao Bounds of Code Aided QAM Dynamical Phase Estimation , 2009, 2009 IEEE International Conference on Communications.

[33]  Heinrich Meyr,et al.  Digital communication receivers - synchronization, channel estimation, and signal processing , 1997, Wiley series in telecommunications and signal processing.

[34]  Heidi Steendam,et al.  The true Cramer-Rao bound for carrier frequency estimation from a PSK signal , 2004, IEEE Transactions on Communications.

[35]  Benoit Geller,et al.  Smoothing PLLs for QAM Dynamical Phase Estimation , 2009, 2009 IEEE International Conference on Communications.

[36]  J. Barbot,et al.  Analytic and Asymptotic Analysis of Bayesian CramÉr–Rao Bound for Dynamical Phase Offset Estimation , 2008, IEEE Transactions on Signal Processing.

[37]  William G. Cowley,et al.  Phase and frequency estimation for PSK packets: bounds and algorithms , 1996, IEEE Trans. Commun..

[38]  Giulio Colavolpe,et al.  On the Cramer-Rao bound for carrier frequency estimation in the presence of phase noise , 2007, GLOBECOM '05. IEEE Global Telecommunications Conference, 2005..

[39]  John McNeill,et al.  Jitter in ring oscillators , 1994, Proceedings of IEEE International Symposium on Circuits and Systems - ISCAS '94.

[40]  Luc Vandendorpe,et al.  Special Issue on Turbo-Information Processing: Algorithms, Implementations & Applications , 2007 .

[41]  H. V. Trees Detection, Estimation, And Modulation Theory , 2001 .