Correlated electronic structure theory for challenging systems

[1]  K. Kowalski,et al.  Coupled cluster calculations on TiO2 nanoclusters. , 2013, The Journal of chemical physics.

[2]  J. Maier,et al.  Electronic absorption spectrum of titanium dioxide in neon matrices , 2008 .

[3]  Jeppe Olsen,et al.  Excitation energies of BH, CH2 and Ne in full configuration interaction and the hierarchy CCS, CC2, CCSD and CC3 of coupled cluster models , 1995 .

[4]  D. Truhlar,et al.  The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals , 2008 .

[5]  David A Dixon,et al.  Molecular structures and energetics of the (TiO2)n (n = 1-4) clusters and their anions. , 2008, The journal of physical chemistry. A.

[6]  Richard L. Martin,et al.  NATURAL TRANSITION ORBITALS , 2003 .

[7]  N. Handy,et al.  A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP) , 2004 .

[8]  Manabu Oumi,et al.  A doubles correction to electronic excited states from configuration interaction in the space of single substitutions , 1994 .

[9]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[10]  Lai‐Sheng Wang,et al.  Probing the electronic structure and band gap evolution of titanium oxide clusters (TiO(2))(n)(-) (n = 1-10) using photoelectron spectroscopy. , 2007, Journal of the American Chemical Society.

[11]  H. Schaefer,et al.  The structures, electron affinities, and energetic stabilities of TiOn and TiOn− (n=1–3) , 1999 .

[12]  Kirk A Peterson,et al.  Systematically convergent basis sets for transition metals. I. All-electron correlation consistent basis sets for the 3d elements Sc-Zn. , 2005, The Journal of chemical physics.

[13]  N. McIntyre,et al.  Spectroscopy of titanium oxide and titanium dioxide molecules in inert matrices at 4.deg.K , 1971 .

[14]  Manuela Merchán,et al.  Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions , 1995 .

[15]  Xiaobo Chen,et al.  Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. , 2007, Chemical reviews.

[16]  M. Velegrakis,et al.  Formation and photodecomposition of cationic titanium oxide clusters , 2009 .

[17]  C. Gout,et al.  Electronic band structure of titanium dioxide , 1977 .

[18]  Martin J. Packer,et al.  A new implementation of the second‐order polarization propagator approximation (SOPPA): The excitation spectra of benzene and naphthalene , 1996 .

[19]  Ove Christiansen,et al.  Response functions in the CC3 iterative triple excitation model , 1995 .

[20]  Christof Hättig,et al.  Structure Optimizations for Excited States with Correlated Second-Order Methods: CC2 and ADC(2) , 2005 .

[21]  F. Finocchi,et al.  First principles simulations of titanium oxide clusters and surfaces , 1999 .

[22]  R. B. Freas,et al.  Formation and fragmentation of gas-phase titanium/oxygen cluster positive ions , 1990 .

[23]  Yuzhen Liu,et al.  Assignment of photoelectron spectra of (TiO2)n with n = 1-3. , 2009, The Journal of chemical physics.

[24]  Poul Jørgensen,et al.  Perturbative triple excitation corrections to coupled cluster singles and doubles excitation energies , 1996 .

[25]  F. Finocchi,et al.  Density functional study of stoichiometric and O-rich titanium oxygen clusters , 2000 .

[26]  D. J. Mowbray,et al.  Stability and Electronic Properties of TiO2 Nanostructures With and Without B and N Doping , 2010, 1001.2573.

[27]  Hongbin Wu,et al.  Electronic structure of titanium oxide clusters: TiOy (y = 1−3) and (TiO2)n (n = 1−4) , 1997 .

[28]  G. Pacchioni,et al.  N-doped TiO2: Theory and experiment , 2007 .

[29]  M. Velegrakis,et al.  Photofragmentation of mass-selected titanium oxide cluster cations , 2010 .

[30]  Luca Frediani,et al.  The Dalton quantum chemistry program system , 2013, Wiley interdisciplinary reviews. Computational molecular science.

[31]  B. Roos,et al.  Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions , 1990 .

[32]  C. Minot,et al.  Reactivity of (TiO2)N Clusters (N = 1−10): Probing Gas-Phase Acidity and Basicity Properties , 2008 .

[33]  J. Olsen,et al.  Excitation energies of H2O, N2 and C2 in full configuration interaction and coupled cluster theory , 1996 .

[34]  Y. Iwasawa,et al.  Surface-mediated visible-light photo-oxidation on pure TiO(2)(001). , 2009, Journal of the American Chemical Society.

[35]  R. Ullah,et al.  Strategies of making TiO2 and ZnO visible light active. , 2009, Journal of hazardous materials.

[36]  F. Grein Density functional theory and multireference configuration interaction studies on low-lying excited states of TiO2. , 2007, The Journal of chemical physics.

[37]  Poul Jørgensen,et al.  The second-order approximate coupled cluster singles and doubles model CC2 , 1995 .

[38]  Zheng-Wang Qu,et al.  Theoretical study of the electronic structure and stability of titanium dioxide clusters (TiO2)n with n = 1-9. , 2006, The journal of physical chemistry. B.

[39]  Walter Thiel,et al.  Benchmarks for Electronically Excited States: A Comparison of Noniterative and Iterative Triples Corrections in Linear Response Coupled Cluster Methods: CCSDR(3) versus CC3. , 2009, Journal of chemical theory and computation.

[40]  Xiaobo Chen Titanium Dioxide Nanomaterials and Their Energy Applications , 2009 .

[41]  G. Kroes,et al.  Theoretical Study of Stable, Defect-Free (TiO2)n Nanoparticles with n = 10−16 , 2007 .

[42]  J. Maier,et al.  Visible spectrum of titanium dioxide. , 2010, Physical chemistry chemical physics : PCCP.

[43]  C. Minot,et al.  Is There a Nanosize for the Activity of TiO2 Compounds , 2009 .

[44]  Hui Zhu,et al.  Do anionic titanium dioxide nano‐clusters reach bulk band gap? A density functional theory study , 2010, J. Comput. Chem..

[45]  Nuno M. S. Almeida,et al.  Excited electronic states of MnO4−: Challenges for wavefunction and density functional response theories , 2015 .

[46]  M. V. Ramana,et al.  A computational study of the TiO2 molecule , 1988 .

[47]  Chelikowsky,et al.  Structural and electronic properties of titanium dioxide. , 1992, Physical review. B, Condensed matter.

[48]  M. Jungen,et al.  Universal Gaussian basis sets for an optimum representation of Rydberg and continuum wavefunctions , 1989 .

[49]  K. Kowalski,et al.  Modeling Excited States in TiO2 Nanoparticles: On the Accuracy of a TD-DFT Based Description , 2014, Journal of chemical theory and computation.

[50]  F. Finocchi,et al.  Ab initio simulation of titanium dioxide clusters , 1999 .

[51]  S. Lago,et al.  Structure and stability of small TiO2 nanoparticles. , 2005, The journal of physical chemistry. B.

[52]  E. Bernstein,et al.  On the titanium oxide neutral cluster distribution in the gas phase: Detection through 118 nm single-photon and 193 nm multiphoton ionization. , 2005, The journal of physical chemistry. A.

[53]  Y. Yao,et al.  X-ray absorption of nanocrystal TiO2 , 1997 .

[54]  S. Sauer Second-order polarization propagator approximation with coupled-cluster singles and doubles amplitudes - SOPPA(CCSD): the polarizability and hyperpolarizability of , 1997 .