Genome Sequence of the Ethene- and Vinyl Chloride-Oxidizing Actinomycete Nocardioides sp. Strain JS614

ABSTRACT Nocardioides sp. strain JS614 grows on ethene and vinyl chloride (VC) as sole carbon and energy sources and is of interest for bioremediation and biocatalysis. Sequencing of the complete genome of JS614 provides insight into the genetic basis of alkene oxidation, supports ongoing research into the physiology and biochemistry of growth on ethene and VC, and provides biomarkers to facilitate detection of VC/ethene oxidizers in the environment. This is the first genome sequence from the genus Nocardioides and the first genome of a VC/ethene-oxidizing bacterium.

[1]  T. Mattes,et al.  Aerobic biodegradation of the chloroethenes: pathways, enzymes, ecology, and evolution. , 2010, FEMS microbiology reviews.

[2]  L. Semprini,et al.  Extending the alkene substrate range of vinyl chloride utilizing Nocardioides sp. strain JS614 with ethene oxide , 2010, Applied Microbiology and Biotechnology.

[3]  Dorothea K. Thompson,et al.  High-level chromate resistance in Arthrobacter sp. strain FB24 requires previously uncharacterized accessory genes , 2009, BMC Microbiology.

[4]  T. Mattes,et al.  Gaseous alkene biotransformation and enantioselective epoxyalkane formation by Nocardioides sp. strain JS614 , 2009, Applied Microbiology and Biotechnology.

[5]  J. W. Peters,et al.  Getting a Handle on the Role of Coenzyme M in Alkene Metabolism , 2008, Microbiology and Molecular Biology Reviews.

[6]  M. Mihăşan,et al.  Two closely related pathways of nicotine catabolism in Arthrobacter nicotinovorans and Nocardioides sp. strain JS614 , 2008, Archives of Microbiology.

[7]  T. Mattes,et al.  Identification of Polypeptides Expressed in Response to Vinyl Chloride, Ethene, and Epoxyethane in Nocardioides sp. Strain JS614 by Using Peptide Mass Fingerprinting , 2007, Applied and Environmental Microbiology.

[8]  G. Gottschalk,et al.  Complete Nucleotide Sequence of the 113-Kilobase Linear Catabolic Plasmid pAL1 of Arthrobacter nitroguajacolicus Rü61a and Transcriptional Analysis of Genes Involved in Quinaldine Degradation , 2007, Journal of bacteriology.

[9]  J. Gossett,et al.  Mechanism controlling the extended lag period associated with vinyl chloride starvation in Nocardioides sp. strain JS614 , 2007, Archives of Microbiology.

[10]  D. Radune,et al.  Secrets of Soil Survival Revealed by the Genome Sequence of Arthrobacter aurescens TC1 , 2006, PLoS genetics.

[11]  B. Fathepure,et al.  Biodegradation of vinyl chloride and cis-dichloroethene by a Ralstonia sp. strain TRW-1 , 2006, Applied Microbiology and Biotechnology.

[12]  J. Gossett,et al.  Physiological and molecular genetic analyses of vinyl chloride and ethene biodegradation in Nocardioides sp. strain JS614 , 2005, Archives of Microbiology.

[13]  S. Brunak,et al.  Improved prediction of signal peptides: SignalP 3.0. , 2004, Journal of molecular biology.

[14]  J. Gossett,et al.  Phylogenetic and Kinetic Diversity of Aerobic Vinyl Chloride-Assimilating Bacteria from Contaminated Sites , 2002, Applied and Environmental Microbiology.

[15]  Paramvir S. Dehal,et al.  Whole-Genome Shotgun Assembly and Analysis of the Genome of Fugu rubripes , 2002, Science.

[16]  C. Jung,et al.  Characterization of JP‐7 jet fuel degradation by the bacterium Nocardioides luteus strain BAFB , 2002, Journal of basic microbiology.

[17]  A. Krogh,et al.  Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. , 2001, Journal of molecular biology.

[18]  E. Topp,et al.  Characterization of S-Triazine Herbicide Metabolism by a Nocardioides sp. Isolated from Agricultural Soils , 2000, Applied and Environmental Microbiology.

[19]  R. Ulrich,et al.  Characterization of an Isolate That Uses Vinyl Chloride as a Growth Substrate under Aerobic Conditions , 2000, Applied and Environmental Microbiology.

[20]  I Mangelsdorf,et al.  Vinyl chloride: still a cause for concern. , 2000, Environmental health perspectives.

[21]  D. Arp,et al.  Isolation and characterization of alkane-utilizing Nocardioides sp. strain CF8. , 2000, FEMS microbiology letters.

[22]  S. Salzberg,et al.  Improved microbial gene identification with GLIMMER. , 1999, Nucleic acids research.

[23]  G. Olsen,et al.  CRITICA: coding region identification tool invoking comparative analysis. , 1999, Molecular biology and evolution.

[24]  K. Suzuki,et al.  Nocardioides nitrophenolicus sp. nov., a p-nitrophenol-degrading bacterium. , 1999, International journal of systematic bacteriology.

[25]  S. Harayama,et al.  Isolation and characterization of marine Nocardioides capable of growing and degrading phenanthrene at 42°C , 1998 .

[26]  S. Eddy,et al.  tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. , 1997, Nucleic acids research.

[27]  N. Pace,et al.  Mineralization of 2,4,6-trinitrophenol (picric acid): Characterization and phylogenetic identification of microbial strains , 1996, Journal of Industrial Microbiology.

[28]  R. Fleischmann,et al.  Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. , 1995, Science.

[29]  K. Luyben,et al.  Bacterial degradation of vinyl chloride , 1985, Biotechnology Letters.

[30]  R. K. E. D. O L A N, † P E T E,et al.  Utilization of Fluoroethene as a Surrogate for Aerobic Vinyl Chloride Transformation , 2007 .

[31]  M. I C H A E,et al.  Volatile Organic Compounds in Untreated Ambient Groundwater of the United States , 1985-1995 , 1999 .