Multimode interactions in suspended cables

[1]  Kazuo Takahashi,et al.  Non-linear vibrations of cables in three dimensions, part II: Out-of-plane vibrations under in-plane sinusoidally time-varying load , 1987 .

[2]  Fabrizio Vestroni,et al.  Planar non-linear free vibrations of an elastic cable , 1984 .

[3]  Noel C. Perkins,et al.  Modal interactions in the non-linear response of elastic cables under parametric/external excitation , 1992 .

[4]  Ali H. Nayfeh,et al.  On the Discretization of Distributed-Parameter Systems with Quadratic and Cubic Nonlinearities , 1997 .

[5]  Michael S. Triantafyllou,et al.  Linear dynamics of cables and chains , 1984 .

[6]  R. N. Iyengar,et al.  Internal resonance and non-linear response of a cable under periodic excitation , 1991 .

[7]  Noel C. Perkins,et al.  Experimental Investigation of Isolated and Simultaneous Internal Resonances in Suspended Cables , 1995 .

[8]  Peter Hagedorn,et al.  On non-linear free vibrations of an elastic cable , 1980 .

[9]  A. H. Nayfeh,et al.  Multiple resonances in suspended cables: direct versus reduced-order models , 1999 .

[10]  G. Rega,et al.  Non-linear dynamics of an elastic cable under planar excitation , 1987 .

[11]  Ali H. Nayfeh,et al.  Experimental Validation of Reduction Methods for Nonlinear Vibrations of Distributed-Parameter Systems: Analysis of a Buckled Beam , 1998 .

[12]  Giuseppe Rega,et al.  Analysis of finite oscillations of elastic cables under internal/external resonance conditions , 1994 .

[13]  A. H. Nayfeh,et al.  Two-To-One Internal Resonances in Parametrically Excited Buckled Beams , 1997 .

[14]  Raouf A. Ibrahim,et al.  Stochastic excitation of suspended cables involving three simultaneous internal resonances using Monte Carlo simulation , 1999 .

[15]  Fabrizio Vestroni,et al.  Modal coupling in the free nonplanar finite motion of an elastic cable , 1986 .

[16]  Noel C. Perkins,et al.  Three-dimensional oscillations of suspended cables involving simultaneous internal resonances , 1995, Nonlinear Dynamics.

[17]  Ali H. Nayfeh,et al.  Nonlinear Nonplanar Dynamics of Parametrically Excited Cantilever Beams , 1998 .

[18]  S. I. Al-Noury,et al.  Large-amplitude vibrations of parabolic cables , 1985 .

[19]  R. Alaggio,et al.  Non-linear oscillations of a four-degree-of-freedom model of a suspended cable under multiple internal resonance conditions , 1995 .

[20]  Giuseppe Rega,et al.  Characterizing bifurcations and classes of motion in the transition to chaos through 3D-tori of a continuous experimental system in solid mechanics , 2000 .

[21]  H. M. Irvine,et al.  The linear theory of free vibrations of a suspended cable , 1974, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[22]  A. H. Nayfeh,et al.  Analysis of one-to-one autoparametric resonances in cables—Discretization vs. direct treatment , 1995, Nonlinear Dynamics.

[24]  Jamal F. Nayfeh,et al.  On methods for continuous systems with quadratic and cubic nonlinearities , 1992 .

[25]  K. Takahashi,et al.  Non-linear vibrations of cables in three dimensions, part I: Non-linear free vibrations , 1987 .

[26]  L. G. Leal,et al.  Symmetries of the Amplitude Equations of an Inextensional Beam With Internal Resonance , 1995 .

[27]  R. Ibrahim,et al.  Multiple Internal Resonance in Suspended Cables under Random In-Plane Loading , 1997 .

[28]  Giuseppe Rega,et al.  Experimental Investigation of the Nonlinear Response of a Hanging Cable. Part I: Local Analysis , 1997 .

[29]  Noel C. Perkins,et al.  Nonlinear oscillations of suspended cables containing a two-to-one internal resonance , 1992, Nonlinear Dynamics.