Characterizing EoR foregrounds: a study of the Lockman Hole region at 325 MHz

One of the key science goals for the most sensitive telescopes, both current and upcoming, is the detection of the redshifted 21-cm signal from the Cosmic Dawn and Epoch of Reionization. The success of detection relies on accurate foreground modeling for their removal from data sets. This paper presents the characterization of astrophysical sources in the Lockman Hole region. Using 325 MHz data obtained from the GMRT, a $6^\circ \times 6^\circ$ mosaiced map is produced with an RMS reaching 50 $\mu$Jy $\mathrm{beam}^{-1}$. A source catalog containing 6186 sources is created, and the Euclidean normalized differential source counts have been derived from it, consistent with previous observations as well as simulations. A detailed comparison of the source catalog is also made with previous findings - at both lower and higher frequencies. The angular power spectrum (APS) of the diffuse Galactic synchrotron emission is determined for three different galactic latitudes using the Tapered Gridded Estimator. The values of the APS lie between $\sim$1 mK$^2$ to $\sim$100 mK$^2$. Fitting a power law of the form $A\ell^{-\beta}$ gives values of $A$ and $\beta$ varying across the latitudes considered. This paper demonstrates, for the first time, the variation of the power-law index for diffuse emission at very high galactic locations. It follows the same trend that is seen at locations near the galactic plane, thus emphasizing the need for low-frequency observations for developing better models of the diffuse emission.

[1]  A. Ghosh,et al.  All-sky angular power spectrum – I. Estimating brightness temperature fluctuations using the 150-MHz TGSS survey , 2020, 2003.07869.

[2]  D. Kaplan,et al.  First Season MWA Phase II Epoch of Reionization Power Spectrum Results at Redshift 7 , 2019, The Astrophysical Journal.

[3]  M. Vaccari,et al.  Deep GMRT 610 MHz observations of the ELAIS N1 field: catalogue and source counts , 2019, Monthly Notices of the Royal Astronomical Society.

[4]  David F. Moore,et al.  A Simplified, Lossless Reanalysis of PAPER-64 , 2019, The Astrophysical Journal.

[5]  H. Intema,et al.  Detailed study of ELAIS N1 field with the uGMRT – II. Source properties and spectral variation of foreground power spectrum from 300–500 MHz observations , 2019, Monthly Notices of the Royal Astronomical Society.

[6]  J. Pober,et al.  Joint estimation of the Epoch of Reionization power spectrum and foregrounds , 2019, Monthly Notices of the Royal Astronomical Society.

[7]  H. Intema,et al.  Detailed study of the ELAIS N1 field with the uGMRT - I. Characterizing the 325 MHz foreground for redshifted 21 cm observations , 2019, Monthly Notices of the Royal Astronomical Society.

[8]  R. Ekers,et al.  Source counts and confusion at 72–231 MHz in the MWA GLEAM survey , 2018, Publications of the Astronomical Society of Australia.

[9]  M. Jarvis,et al.  LOFAR observations of the XMM-LSS field , 2018, Astronomy & Astrophysics.

[10]  M. Jarvis,et al.  The Lockman Hole Project: new constraints on the sub-mJy source counts from a wide-area 1.4 GHz mosaic , 2018, Monthly Notices of the Royal Astronomical Society.

[11]  University College London,et al.  The first power spectrum limit on the 21-cm signal of neutral hydrogen during the Cosmic Dawn at z = 20–25 from LOFAR , 2018, Monthly Notices of the Royal Astronomical Society.

[12]  Cathryn M. Trott,et al.  The Phase II Murchison Widefield Array: Design overview , 2018, Publications of the Astronomical Society of Australia.

[13]  A. Bonaldi,et al.  The Tiered Radio Extragalactic Continuum Simulation (T-RECS) , 2018, Monthly Notices of the Royal Astronomical Society.

[14]  Cathryn M. Trott,et al.  Source Finding in the Era of the SKA (Precursors): Aegean 2.0 , 2018, Publications of the Astronomical Society of Australia.

[15]  Miguel de Val-Borro,et al.  The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.

[16]  A. Ghosh,et al.  The angular power spectrum measurement of the Galactic synchrotron emission in two fields of the TGSS survey , 2017, 1704.08642.

[17]  D. Frail,et al.  The VLA-COSMOS 3 GHz Large Project: Continuum data and source catalog release , 2017, 1703.09713.

[18]  Christopher L. Williams,et al.  GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey - I. A low-frequency extragalactic catalogue , 2016, 1610.08318.

[19]  A. Ghosh,et al.  The visibility-based tapered gridded estimator (TGE) for the redshifted 21-cm power spectrum , 2016, 1609.01732.

[20]  H. Rottgering,et al.  The Lockman Hole project: LOFAR observations and spectral index properties of low-frequency radio sources , 2016, 1609.00537.

[21]  A. R. Whitney,et al.  FIRST SEASON MWA EOR POWER SPECTRUM RESULTS AT REDSHIFT 7 , 2016, 1608.06281.

[22]  C. Carilli,et al.  Contamination of the Epoch of Reionization power spectrum in the presence of foregrounds , 2016, 1607.07628.

[23]  T. Ensslin,et al.  LOFAR 150-MHz observations of the Boötes field: catalogue and source counts , 2016, 1605.01531.

[24]  D. Frail,et al.  The GMRT 150 MHz all-sky radio survey - First alternative data release TGSS ADR1 , 2016, 1603.04368.

[25]  R. Perley,et al.  Deep 3-GHz observations of the Lockman Hole North with the Very Large Array - I. Source extraction and uncertainty analysis , 2016, 1603.03084.

[26]  R. Perley,et al.  Deep 3-GHz observations of the Lockman Hole North with the Very Large Array - II. Catalogue and μJy source properties , 2016, 1603.03085.

[27]  Daniel A. Mitchell,et al.  CHIPS: THE COSMOLOGICAL H i POWER SPECTRUM ESTIMATOR , 2016, 1601.02073.

[28]  R. P. Norris,et al.  ATLAS - I. Third release of 1.4 GHz mosaics and component catalogues , 2015, 1508.03150.

[29]  D. R. DeBoer,et al.  Hydrogen Epoch of Reionization Array (HERA) , 2016, 1606.07473.

[30]  Va,et al.  Radio faint AGN: a tale of two populations , 2015, 1506.06554.

[31]  D. A. Rafferty,et al.  PyBDSF: Python Blob Detection and Source Finder , 2015 .

[32]  Hemant Shukla,et al.  HI tomographic imaging of the Cosmic Dawn and Epoch of Reionization with SKA , 2015, 1501.04203.

[33]  A. Ghosh,et al.  Visibility-based angular power spectrum estimation in low-frequency radio interferometric observations , 2014, 1409.7789.

[34]  E. Fomalont,et al.  Deep 3 GHz number counts from a P(D) fluctuation analysis , 2013, 1311.7451.

[35]  H. Junklewitz,et al.  Studying Galactic interstellar turbulence through fluctuations in synchrotron emission , 2013, Astronomy & Astrophysics.

[36]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[37]  J. Starck,et al.  The scale of the problem: Recovering images of reionization with Generalized Morphological Component Analysis , 2012, 1209.4769.

[38]  A. Loeb,et al.  The First Galaxies in the Universe , 2013 .

[39]  G. Bruce Berriman,et al.  Astrophysics Source Code Library , 2012, ArXiv.

[40]  H. Rottgering,et al.  T-RaMiSu: the Two-meter Radio Mini Survey - I. The Boötes Field , 2012, 1211.1189.

[41]  Saleem Zaroubi,et al.  The Scale of the Problem : Recovering Images of Reionization with GMCA , 2012, 1209.4769.

[42]  J. Prasad,et al.  Characterizing foreground for redshifted 21 cm radiation: 150 MHz Giant Metrewave Radio Telescope observations , 2012, 1208.1617.

[43]  Cathryn M. Trott,et al.  THE IMPACT OF POINT-SOURCE SUBTRACTION RESIDUALS ON 21 cm EPOCH OF REIONIZATION ESTIMATION , 2012, 1208.0646.

[44]  T. Robitaille,et al.  APLpy: Astronomical Plotting Library in Python , 2012 .

[45]  K. I. Kellermann,et al.  RESOLVING THE RADIO SOURCE BACKGROUND: DEEPER UNDERSTANDING THROUGH CONFUSION , 2012, 1207.2439.

[46]  A. Scaife,et al.  A broad-band flux scale for low-frequency radio telescopes , 2012, 1203.0977.

[47]  Andrew Hopkins,et al.  Compact continuum source finding for next generation radio surveys , 2012, 1202.4500.

[48]  Abraham Loeb,et al.  21 cm cosmology in the 21st century , 2011, Reports on progress in physics. Physical Society.

[49]  H. Rottgering,et al.  Deep low-frequency radio observations of the NOAO Boötes field - I. Data reduction and catalog construction , 2011, 1109.5906.

[50]  Charlottesville,et al.  THE VLA SURVEY OF CHANDRA DEEP FIELD SOUTH. V. EVOLUTION AND LUMINOSITY FUNCTIONS OF SUB-MILLIJANSKY RADIO SOURCES AND THE ISSUE OF RADIO EMISSION IN RADIO-QUIET ACTIVE GALACTIC NUCLEI , 2011, 1107.2759.

[51]  Abhirup Datta,et al.  BRIGHT SOURCE SUBTRACTION REQUIREMENTS FOR REDSHIFTED 21 cm MEASUREMENTS , 2010 .

[52]  A. Ghosh,et al.  GMRT observation towards detecting the post-reionization 21-cm signal , 2010, 1010.4489.

[53]  S. Zaroubi,et al.  Realistic simulations of the Galactic polarized foreground: consequences for 21‐cm reionization detection experiments , 2010, 1007.4135.

[54]  U. Pen,et al.  The GMRT Epoch of Reionization experiment: a new upper limit on the neutral hydrogen power spectrum at z≈ 8.6 , 2010, 1006.1351.

[55]  J. M. Riley,et al.  Further GMRT observations of the Lockman Hole at 610 MHz , 2010, 1008.2777.

[56]  M. Morales,et al.  Reionization and Cosmology with 21-cm Fluctuations , 2009, 0910.3010.

[57]  S. Bhatnagar,et al.  DETECTION OF SIGNALS FROM COSMIC REIONIZATION USING RADIO INTERFEROMETRIC SIGNAL PROCESSING , 2009, 0908.2639.

[58]  H. Rottgering,et al.  Ionospheric calibration of low frequency radio interferometric observations using the peeling scheme I. Method description and first results , 2009, 0904.3975.

[59]  Mervyn J. Lynch,et al.  THE PRECISION ARRAY FOR PROBING THE EPOCH OF RE-IONIZATION: EIGHT STATION RESULTS , 2009, 0904.2334.

[60]  Frazer N. Owen,et al.  THE DEEP SWIRE FIELD. II. 90 cm CONTINUUM OBSERVATIONS AND 20 cm–90 cm SPECTRA , 2009, 0904.2011.

[61]  S. Zaroubi,et al.  Foregrounds for observations of the cosmological 21 cm line - I. First Westerbork measurements of Galactic emission at 150 MHz in a low latitude field , 2009, 0904.0404.

[62]  J. Dunlop,et al.  Deep multi-frequency radio imaging in the Lockman Hole using the GMRT and VLA , 2009, 0903.3600.

[63]  -INAF,et al.  THE VERY LARGE ARRAY SURVEY OF THE CHANDRA DEEP FIELD SOUTH. IV. SOURCE POPULATION , 2008, 0812.2997.

[64]  Frazer N. Owen,et al.  THE DEEP SWIRE FIELD. I. 20 cm CONTINUUM RADIO OBSERVATIONS: A CROWDED SKY , 2008, 0809.0314.

[65]  Matias Zaldarriaga,et al.  Will point sources spoil 21-cm tomography? , 2008, 0807.3952.

[66]  L. Miller,et al.  A semi-empirical simulation of the extragalactic radio continuum sky for next generation radio telescopes , 2008, 0805.3413.

[67]  David A. Green,et al.  A 610-MHz survey of the Lockman Hole with the Giant Metrewave Radio Telescope – I. Observations, data reduction and source catalogue for the central 5 deg2 , 2008, 0804.2421.

[68]  S. Zaroubi,et al.  Foreground simulations for the LOFAR-epoch of reionization experiment , 2008, 0804.1130.

[69]  Ž. Ivezić,et al.  A New Method to Separate Star-forming from AGN Galaxies at Intermediate Redshift: The Submillijansky Radio Population in the VLA-COSMOS Survey , 2008, 0803.0997.

[70]  Mullard Space Science Laboratory,et al.  The Star Formation History of the Universe as Revealed by Deep Radio Observations , 2008, 0802.4105.

[71]  Max Tegmark,et al.  A model of diffuse Galactic radio emission from 10 MHz to 100 GHz , 2008, 0802.1525.

[72]  J. Chengalur,et al.  Foregrounds for redshifted 21-cm studies of reionization: Giant Meter Wave Radio Telescope 153-MHz observations , 2008, 0801.2424.

[73]  C. Burigana,et al.  The impact of Galactic synchrotron emission on CMB anisotropy measurements. I. Angular power spectru , 2008, 0801.0547.

[74]  G. Vettolani,et al.  The ATESP 5 GHz radio survey - II. Physical properties of the faint radio population , 2007, 0710.5682.

[75]  Tadafumi Takata,et al.  Radio imaging of the Subaru/XMM-Newton Deep Field - I. The 100-μJy catalogue, optical identifications, and the nature of the faint radio source population , 2006, astro-ph/0609529.

[76]  S. Bharadwaj,et al.  The multifrequency angular power spectrum of the epoch of reionization 21-cm signal , 2006, astro-ph/0605546.

[77]  S. Furlanetto,et al.  Redshifted 21 cm Emission from Minihalos before Reionization , 2006, astro-ph/0604080.

[78]  Xiaohui Fan,et al.  Observational Constraints on Cosmic Reionization , 2006, astro-ph/0602375.

[79]  L. Knox,et al.  Multifrequency Analysis of 21 Centimeter Fluctuations from the Era of Reionization , 2004, astro-ph/0408515.

[80]  S. Bharadwaj,et al.  On using visibility correlations to probe the Hi distribution from the dark ages to the present epoch – I. Formalism and the expected signal , 2004, astro-ph/0406676.

[81]  T. D. Matteo,et al.  The 21-cm emission from the reionization epoch: extended and point source foregrounds , 2004, astro-ph/0402322.

[82]  S. Furlanetto,et al.  Free-Free Emission at Low Radio Frequencies , 2004, astro-ph/0402239.

[83]  M. Zaldarriaga,et al.  21 Centimeter Fluctuations from Cosmic Gas at High Redshifts , 2003, astro-ph/0311514.

[84]  Eric W. Greisen,et al.  AIPS, the VLA, and the VLBA , 2003 .

[85]  Garching,et al.  A deep VLA survey at 6 cm in the Lockman Hole , 2002, astro-ph/0211625.

[86]  IoA,et al.  Radio Foregrounds for the 21 Centimeter Tomography of the Neutral Intergalactic Medium at High Redshifts , 2001, astro-ph/0109241.

[87]  S. Serjeant,et al.  SWIRE: The SIRTF Wide‐Area Infrared Extragalactic Survey , 2001, astro-ph/0305375.

[88]  A. Loeb,et al.  The Reionization of the Universe by the First Stars and Quasars , 2000, astro-ph/0010467.

[89]  M. Rees,et al.  21 Centimeter Tomography of the Intergalactic Medium at High Redshift , 1996, astro-ph/9608010.

[90]  Richard L. White,et al.  The FIRST Survey: Faint Images of the Radio Sky at twenty centimeters , 1995 .

[91]  D. McCammon,et al.  Galactic HI in Directions of Low Total Column Density , 1986 .

[92]  R. Kron,et al.  Sub-millijansky 1.4 GHz source counts and multicolor studies of weak radio galaxy populations , 1985 .

[93]  G. Field The Time Relaxation of a Resonance-Line Profile. , 1959 .

[94]  G. Field The Spin Temperature of Intergalactic Neutral Hydrogen. , 1959 .

[95]  A. Eddington,et al.  On a Formula for Correcting Statistics for the Effects of a known Probable Error of Observation , 1913 .

[96]  S. P. Littlefair,et al.  THE ASTROPY PROJECT: BUILDING AN INCLUSIVE, OPEN-SCIENCE PROJECT AND STATUS OF THE V2.0 CORE PACKAGE , 2018 .

[97]  Lourdes Verdes-Montenegro,et al.  Advancing Astrophysics with the Square Kilometre Array , 2015 .

[98]  Govind Swarup,et al.  The Giant Metre-Wave Radio Telescope , 1991 .

[99]  George B. Field,et al.  Excitation of the Hydrogen 21-CM Line , 1958, Proceedings of the IRE.