On the tidal evolution of Hot Jupiters on inclined orbits

Tidal friction is thought to be important in determining the long-term spin-orbit evolution of short-period extrasolar planetary systems. Using a simple model of the orbit-averaged effects of tidal friction, we study the evolution of close-in planets on inclined orbits, due to tides. We analyse the effects of the inclusion of stellar magnetic braking by performing a phase-plane analysis of a simplified system of equations, including the braking torque. The inclusion of magnetic braking is found to be important, and its neglect can result in a very different system history. We then present the results of numerical integrations of the tidal evolution equations, where we find that it is essential to consider coupled evolution of the orbital and rotational elements, including dissipation in both the star and planet, to accurately model the evolution. The main result of our integrations is that for typical Hot Jupiters, tidal friction aligns the stellar spin with the orbit on a similar time as it causes the orbit to decay. This tells us that if a planet is observed to be aligned, then it probably formed coplanar. This reinforces the importance of Rossiter–McLaughlin effect observations in determining the degree of spin-orbit alignment in transiting systems. We apply these results to the only observed system with a spin-orbit misalignment, XO-3, and constrain the efficiency of tidal dissipation (i.e. the modified tidal quality factors Q′) in both the star and the planet in this system. Using a model in which inertial waves are excited by tidal forcing in the outer convective envelope and dissipated by turbulent viscosity, we calculate Q′ for a range of F-star models, and find it to vary considerably within this class of stars. This means that using a single Q′, and assuming that it applies to all stars, is probably incorrect. In addition, we propose an explanation for the survival of two of the planets on the tightest orbits, WASP-12 b and OGLE-TR-56 b, in terms of weak dissipation in the star, as a result of their internal structures and slow rotation periods.

[1]  D. Lin,et al.  Calculating the Tidal, Spin, and Dynamical Evolution of Extrasolar Planetary Systems , 2002 .

[2]  S. Peale,et al.  The tides of Io , 1981 .

[3]  C. Murray,et al.  Solar System Dynamics: Expansion of the Disturbing Function , 1999 .

[4]  N. Murray,et al.  Planet Migration and Binary Companions: The Case of HD 80606b , 2003, astro-ph/0303010.

[5]  Peter P. Eggleton,et al.  The Equilibrium Tide Model for Tidal Friction , 1998, astro-ph/9801246.

[6]  John C B Papaloizou,et al.  Planet formation and migration , 2006 .

[7]  Eric S. Dickson,et al.  Dynamical Tide in Solar-Type Binaries , 1998, astro-ph/9801289.

[8]  William H. Press,et al.  Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .

[9]  C. Moutou,et al.  Magnetic cycles of the planet-hosting star τ Bootis , 2008, 0802.1584.

[10]  Eric B. Ford,et al.  Dynamical Outcomes of Planet-Planet Scattering , 2007, astro-ph/0703166.

[11]  J. Papaloizou,et al.  Disk-Planet Interactions During Planet Formation , 2006, astro-ph/0603196.

[12]  Non-adiabatic tidal forcing of a massive, uniformly rotating star II: The low frequency, inertial regime , 1997, astro-ph/9706186.

[13]  L. Davis,et al.  The angular momentum of the solar wind. , 1967 .

[14]  D. Lin,et al.  Spin-Orbit Evolution of Short-Period Planets , 2004, astro-ph/0408191.

[15]  Cambridge,et al.  Secular Interactions between Inclined Planets and a Gaseous Disk , 2001, astro-ph/0106453.

[16]  D. B. McLaughlin Some results of a spectrographic study of the Algol system. , 1924 .

[17]  K. Macgregor,et al.  Rotational Evolution of Solar-Type Stars. I. Main-Sequence Evolution , 1991 .

[18]  R. A. Rossiter On the detection of an effect of rotation during eclipse in the velocity of the brigher component of beta Lyrae, and on the constancy of velocity of this system. , 1924 .

[19]  G. Savonije,et al.  Orbital evolution by dynamical tides in solar type stars. Application to binary stars and planetary orbits , 2002 .

[20]  R. Taam,et al.  The Disrupted Magnetic Braking Hypothesis and the Period Gap of Cataclysmic Variables , 1989 .

[21]  J. Zahn,et al.  Tidal Effects in Stars, Planets and Disks , 2008 .

[22]  J. Winn,et al.  A Possible Spin-Orbit Misalignment in the Transiting Eccentric Planet HD 17156b , 2007, 0712.2569.

[23]  Peter R. McCullough,et al.  XO-3b: A Massive Planet in an Eccentric Orbit Transiting an F5 V Star , 2007, 0712.4283.

[24]  Astronomy,et al.  A further "degree of freedom" in the rotational evolution of stars , 2005, astro-ph/0508643.

[25]  S. Tremaine,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 SHRINKING BINARY AND PLANETARY ORBITS BY KOZAI CYCLES WITH TIDAL FRICTION , 2022 .

[26]  C. Charles,et al.  Outcomes of Tidal Evolution , 1973 .

[27]  Steven Soter,et al.  Q in the solar system , 1966 .

[28]  A Primordial Origin of the Laplace Relation Among the Galilean Satellites , 2002, Science.

[29]  D. Sasselov The New Transiting Planet OGLE-TR-56b: Orbit and Atmosphere , 2003, astro-ph/0303403.

[30]  C. Moutou,et al.  Misaligned spin-orbit in the XO-3 planetary system?† , 2008, Proceedings of the International Astronomical Union.

[31]  R. Paul Butler,et al.  Measurement of Spin-Orbit Alignment in an Extrasolar Planetary System , 2005, astro-ph/0504555.

[32]  D. Lin,et al.  TIDAL DISSIPATION IN ROTATING SOLAR-TYPE STARS , 2007 .

[33]  Richard Greenberg,et al.  Stability Limits in Resonant Planetary Systems , 2007, 0706.3721.

[34]  D. N. C. Lin,et al.  Tidal Dissipation in Rotating Giant Planets , 2004 .

[35]  P. Bodenheimer,et al.  Orbital migration of the planetary companion of 51 Pegasi to its present location , 1996, Nature.

[36]  On the Rotational Evolution of Solar- and Late-Type Stars, Its Magnetic Origins, and the Possibility of Stellar Gyrochronology* , 2003, astro-ph/0303631.

[37]  J. Papaloizou,et al.  Non-adiabatic tidal forcing of a massive, uniformly rotating star II: The low frequency, inertial regime , 1995, astro-ph/9706187.

[38]  William H. Press,et al.  Numerical Recipes in FORTRAN - The Art of Scientific Computing, 2nd Edition , 1987 .

[39]  M. Nagasawa,et al.  Formation of Hot Planets by a Combination of Planet Scattering, Tidal Circularization, and the Kozai Mechanism , 2008, 0801.1368.

[40]  Peter Bodenheimer,et al.  On the Tidal Inflation of Short-Period Extrasolar Planets , 2001 .

[41]  J. Zahn Tidal dissipation in binary systems , 2008, 0807.4870.

[42]  M. Mayor,et al.  A Jupiter-mass companion to a solar-type star , 1995, Nature.

[43]  Richard Greenberg,et al.  Tidal Evolution of Close-in Extrasolar Planets , 2008 .

[44]  Anita L. Cochran,et al.  The Spin-Orbit Alignment of the HD 17156 Transiting Eccentric Planetary System , 2008, 0806.4142.

[45]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[46]  R. Greenberg Outcomes of tidal evolution for orbits with arbitrary inclination , 1974 .

[47]  S. Tremaine,et al.  Dynamical Origin of Extrasolar Planet Eccentricity Distribution , 2007, astro-ph/0703160.

[48]  J. A. Crowther Reports on Progress in Physics , 1941, Nature.

[49]  W. Kley,et al.  On the evolution of eccentric and inclined protoplanets embedded in protoplanetary disks , 2007, 0707.2225.

[50]  Richard Greenberg,et al.  Tidal Heating of Extrasolar Planets , 2008, 0803.0026.

[51]  R. Paul Butler,et al.  The Planet around 51 Pegasi , 1997 .

[52]  R. Taam,et al.  Magnetic Braking Revisited , 2003, astro-ph/0308361.

[53]  A. Skumanich,et al.  TIME SCALES FOR Ca II EMISSION DECAY, ROTATIONAL BRAKING, AND LITHIUM DEPLETION. , 1971 .

[54]  R. G. West,et al.  WASP-12b: THE HOTTEST TRANSITING EXTRASOLAR PLANET YET DISCOVERED , 2008, 0812.3240.

[55]  Origins of Eccentric Extrasolar Planets: Testing the Planet-Planet Scattering Model , 2007, astro-ph/0703163.

[56]  Peter P. Eggleton,et al.  Orbital Evolution in Binary and Triple Stars, with an Application to SS Lacertae , 2001, astro-ph/0104126.