On design of error-correcting reversible variable length codes

We propose an algorithm for construction of reversible variable length codes (RVLCs) with good error-correcting properties. The error-correcting properties are evaluated by a metric called the free distance, which is always greater than one in the case of the proposed RVLCs. Since variable length codes (VLCs) typically have free distance equal to one, the proposed RVLCs exhibit significant improvement in symbol error rate relative to VLCs constructed using standard methods.

[1]  M. Wada,et al.  Reversible variable length codes , 1995, IEEE Trans. Commun..

[2]  Susanna Kaiser,et al.  Soft decoding of variable-length codes , 2000, 2000 IEEE International Conference on Communications. ICC 2000. Global Convergence Through Communications. Conference Record.

[3]  Tamotsu Kasai,et al.  A Method for the Correction of Garbled Words Based on the Levenshtein Metric , 1976, IEEE Transactions on Computers.

[4]  Joachim Hagenauer,et al.  On variable length codes for iterative source/channel decoding , 2001, Proceedings DCC 2001. Data Compression Conference.

[5]  John D. Villasenor,et al.  Reversible variable length codes for efficient and robust image and video coding , 1998, Proceedings DCC '98 Data Compression Conference (Cat. No.98TB100225).

[6]  Shu Lin,et al.  Error control coding : fundamentals and applications , 1983 .

[7]  V. Balakirsky Joint source-channel coding with variable length codes , 1997, Proceedings of IEEE International Symposium on Information Theory.

[8]  John D. Villasenor,et al.  Utilizing soft information in decoding of variable length codes , 1999, Proceedings DCC'99 Data Compression Conference (Cat. No. PR00096).

[9]  Patrick G. Farrell,et al.  Variable-length error-correcting codes , 2000 .

[10]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[11]  Ja-Ling Wu,et al.  On constructing the Huffman-code-based reversible variable-length codes , 2001, IEEE Trans. Commun..