Advances in 2-μm Tm-doped mode-locked fiber lasers

Abstract Over the last five years, the number of demonstrations of mode-locked thulium-doped fiber lasers with output wavelengths around 2 μm has increased rapidly. Mode-locked Tm-doped fiber lasers now provide pulse energies above 150 μJ and durations less than 30 fs (although not simultaneously). Applications for these sources are continuously being developed as they become commercially available and currently include medicine, environmental sensing, materials processing, and defense. A review of previously demonstrated mode-locked thulium-doped fiber lasers up to the state-of-the-art will be presented along with the aforementioned applications of these sources.

[1]  M. E. Fermann,et al.  500 MHz, 58fs highly coherent Tm fiber soliton laser , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[2]  Jaroslaw Sotor,et al.  Thulium-doped all-fiber laser mode-locked by CVD-graphene/PMMA saturable absorber. , 2013, Optics express.

[3]  Dietmar Kracht,et al.  Pulse characteristics of a passively mode-locked thulium fiber laser with positive and negative cavity dispersion. , 2010, Optics express.

[4]  P. Corkum,et al.  Plasma perspective on strong field multiphoton ionization. , 1993, Physical review letters.

[5]  Martin Richardson,et al.  1 μJ, sub-500 fs chirped pulse amplification in a Tm-doped fiber system. , 2013, Optics letters.

[6]  Michel Digonnet,et al.  Self-phase-locked degenerate femtosecond optical parametric oscillator. , 2008, Optics letters.

[7]  Hemmo Tuovinen,et al.  Dissipative dispersion-managed soliton 2 μm thulium/holmium fiber laser. , 2011, Optics letters.

[8]  Zhongyuan Sun,et al.  All-fiber passively mode-locked Tm-doped NOLM-based oscillator operating at 2-μm in both soliton and noisy-pulse regimes. , 2014, Optics express.

[9]  Evgueni M. Dianov,et al.  Mode-locked 1.93 μm thulium fiber laser with a carbon nanotube absorber , 2008 .

[10]  J. Marangos High-harmonic generation: Solid progress , 2011 .

[11]  Perry,et al.  Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses. , 1995, Physical review letters.

[12]  Alireza Marandi,et al.  Octave-spanning supercontinuum generation in in situ tapered As₂S₃ fiber pumped by a thulium-doped fiber laser. , 2013, Optics letters.

[13]  David J. Richardson,et al.  High power fiber lasers: current status and future perspectives [Invited] , 2010 .

[14]  Hermann A. Haus,et al.  Broadly tunable sub‐500 fs pulses from an additive‐pulse mode‐locked thulium‐doped fiber ring laser , 1995 .

[15]  J. Taylor,et al.  Tm-doped fiber laser mode-locked by graphene-polymer composite. , 2012, Optics express.

[16]  Carsten Langrock,et al.  Supercontinuum generation in quasi-phase-matched LiNbO3 waveguide pumped by a Tm-doped fiber laser system. , 2011, Optics letters.

[17]  W. W. Hansen,et al.  A linear electron accelerator. , 1948, The Review of scientific instruments.

[18]  D. Kracht,et al.  Stretched-pulse operation of a thulium-doped fiber laser with a fiber-based dispersion management , 2008, 2012 Conference on Lasers and Electro-Optics (CLEO).

[19]  F. Wise,et al.  Giant-chirp oscillators for short-pulse fiber amplifiers. , 2008 .

[20]  M. Guina,et al.  Tunable Raman Soliton Source Using Mode-Locked Tm–Ho Fiber Laser , 2007, IEEE Photonics Technology Letters.

[21]  Günter Steinmeyer,et al.  Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation , 1999 .

[22]  Qian Wang,et al.  Mode-locked 2 μm thulium-doped fiber laser with graphene oxide saturable absorber , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[23]  G. Travish,et al.  Demonstration of electron acceleration in a laser-driven dielectric microstructure , 2013, Nature.

[24]  Pierre Bourdon,et al.  26 nJ picosecond solitons from thulium-doped single-mode master oscillator power fiber amplifier. , 2012, Optics letters.

[25]  Dietmar Kracht,et al.  Pulse energy of 151 nJ from ultrafast thulium-doped chirped-pulse fiber amplifier. , 2010, Optics letters.

[26]  Shian Zhou,et al.  Divided-pulse Amplification of Ultrashort Pulses , 2006, 2007 Conference on Lasers and Electro-Optics (CLEO).

[27]  Kevin P. Chen,et al.  All-fiber ultrafast thulium-doped fiber ring laser with dissipative soliton and noise-like output in normal dispersion by single-wall carbon nanotubes , 2013 .

[28]  Kwanil Lee,et al.  Mode-locked pulse generation from an all-fiberized, Tm-Ho-codoped fiber laser incorporating a graphene oxide-deposited side-polished fiber. , 2013, Optics express.

[29]  Thomas Udem,et al.  Cavity-enhanced dual-comb spectroscopy , 2009, 0908.1928.

[30]  B. Chichkov,et al.  Precise deep drilling of metals by femtosecond laser pulses , 2003 .

[31]  Peng Wan,et al.  High power 2 µm femtosecond fiber laser. , 2013, Optics express.

[32]  J. Cunningham,et al.  Femtosecond pulses from a continuously self-starting passively mode-locked Ti:sapphire laser. , 1991, Optics letters.

[33]  Qian Wang,et al.  High average power picosecond pulse generation from a thulium-doped all-fiber MOPA system. , 2012, Optics express.

[34]  E. Dianov Fibre optics: Forty years later , 2010 .

[35]  Jian Liu,et al.  156 micro-J ultrafast Thulium-doped fiber laser , 2013, Photonics West - Lasers and Applications in Science and Engineering.

[36]  J. Limpert,et al.  High Repetition Rate Gigawatt Peak Power Fiber Laser Systems: Challenges, Design, and Experiment , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[37]  P. G. Kryukov,et al.  Nonlinear Amplifying Loop-Mirror-Based Mode-Locked Thulium-Doped Fiber Laser , 2012, IEEE Photonics Technology Letters.

[38]  M. Fermann,et al.  230-kW peak power femtosecond pulses from a high power tunable source based on amplification in Tm-doped fiber. , 2005, Optics express.

[39]  K. Kieu,et al.  Soliton Thulium-Doped Fiber Laser With Carbon Nanotube Saturable Absorber , 2009, IEEE Photonics Technology Letters.

[40]  Jacek Swiderski,et al.  Mid-IR supercontinuum generation in a ZBLAN fiber pumped by a gain-switched mode-locked Tm-doped fiber laser and amplifier system. , 2013, Optics express.

[41]  M. Murnane,et al.  The attosecond nonlinear optics of bright coherent X-ray generation , 2010 .

[42]  J. Toulouse,et al.  Optical nonlinearities in fibers: review, recent examples, and systems applications , 2005, Journal of Lightwave Technology.

[43]  Kevin Chen,et al.  Mode-locked ultrafast Thulium fiber laser with all-fiber dispersion management , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[44]  P. Hommelhoff,et al.  Laser-based acceleration of nonrelativistic electrons at a dielectric structure. , 2013, Physical review letters.

[45]  M. Fermann,et al.  Single-mode excitation of multimode fibers with ultrashort pulses. , 1998, Optics letters.

[46]  R. Byer,et al.  Laser damage threshold measurements of optical materials for direct laser accelerators , 2013 .

[47]  Ingmar Hartl,et al.  Octave-spanning ultrafast OPO with 2.6-6.1 µm instantaneous bandwidth pumped by femtosecond Tm-fiber laser. , 2012, Optics express.

[48]  Qing Wang,et al.  2-μm fiber laser sources for sensing , 2013 .

[49]  J. Steinfeld,et al.  Explosives detection: a challenge for physical chemistry. , 1998, Annual review of physical chemistry.

[50]  Tino Eidam,et al.  Femtosecond fiber CPA system emitting 830 W average output power. , 2010, Optics letters.

[51]  Kristel D. Polder,et al.  Treatment of Melasma Using a Novel 1,927‐nm Fractional Thulium Fiber Laser: A Pilot Study , 2012, Dermatologic surgery : official publication for American Society for Dermatologic Surgery [et al.].

[52]  Qing Wang,et al.  Mode-Locked Tm–Ho-Codoped Fiber Laser at 2.06 $\mu$ m , 2011, IEEE Photonics Technology Letters.

[53]  S. Jackson Towards high-power mid-infrared emission from a fibre laser , 2012, Nature Photonics.

[54]  A. Zach,et al.  All-fiber generation of few-cycle pulses at 1950 nm by triple-stage compression of a Thulium-doped laser system , 2013, 2013 IEEE Photonics Conference.

[55]  S. Diddams,et al.  Standards of Time and Frequency at the Outset of the 21st Century , 2004, Science.

[56]  I. Hartl,et al.  Optically Referenced Tm-Fiber-Laser Frequency Comb , 2012 .

[57]  Dietmar Kracht,et al.  Ultrafast thulium-doped fiber-oscillator with pulse energy of 4.3 nJ. , 2008, Optics letters.

[58]  Scott A. Diddams,et al.  Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb , 2007, Nature.

[59]  R. Byer,et al.  Thulium-doped Germanosilicate Mode-locked Fiber Lasers , 2012 .

[60]  J. Fini,et al.  Intuitive modeling of bend distortion in large-mode-area fibers. , 2007, Optics letters.

[61]  Ralf Brinkmann,et al.  Cw high-power IR laser at 2 μm for minimally invasive surgery , 2003, European Conference on Biomedical Optics.

[62]  I. Duling All-fiber ring soliton laser mode locked with a nonlinear mirror. , 1991, Optics letters.

[63]  S. Schiller,et al.  Spectrometry with frequency combs. , 2002, Optics letters.

[64]  James P. Gordon,et al.  Negative group-velocity dispersion using refraction , 1984 .

[65]  B. Orr Infrared LIDAR Applications in Atmospheric Monitoring , 2006 .

[66]  D. E. Spock,et al.  190 fs passively mode-locked thulium fiber laser with low threshold , 1996, Summaries of papers presented at the Conference on Lasers and Electro-Optics.

[67]  I Hartl,et al.  Mid-infrared supercontinuum generation in As2S3-silica "nano-spike" step-index waveguide. , 2013, Optics express.

[68]  R. Alfano,et al.  Observation of Self-Phase Modulation and Small-Scale Filaments in Crystals and Glasses , 1970 .

[69]  Fritz Keilmann,et al.  Time-domain mid-infrared frequency-comb spectrometer. , 2004, Optics letters.

[70]  N. Coluccelli,et al.  Single-clad Tm-Ho:fiber amplifier for high-power sub-100-fs pulses around 1.9 μm. , 2013, Optics letters.

[71]  R. Ischebeck,et al.  Breakdown limits on Gigavolt-per-meter electron-beam-driven wakefields in dielectric structures. , 2008, Physical review letters.

[72]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[73]  John E. Bertie,et al.  Infrared Intensities of Liquids XX: The Intensity of the OH Stretching Band of Liquid Water Revisited, and the Best Current Values of the Optical Constants of H2O(l) at 25°C between 15,000 and 1 cm−1 , 1996 .

[74]  J. Gordon,et al.  Theory of the soliton self-frequency shift. , 1986, Optics letters.

[75]  Martin Richardson,et al.  Atmospheric transmission testing using a portable, tunable, high power thulium fiber laser system , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[76]  Samuli Kivistö,et al.  Carbon nanotube films for ultrafast broadband technology. , 2009, Optics express.

[77]  Y. Messaddeq,et al.  Mid-infrared chalcogenide glass Raman fiber laser. , 2013, Optics letters.

[78]  M. J. F. Digonnet,et al.  Amplified 2-$\mu{\rm m}$ Thulium-Doped All-Fiber Mode-Locked Figure-Eight Laser , 2013, Journal of Lightwave Technology.

[79]  Eric Esarey,et al.  New source technologies and their impact on future light sources , 2010 .

[80]  Albert Schliesser,et al.  Mid-infrared frequency combs , 2012, Nature Photonics.

[81]  John Haub,et al.  Development of resonantly cladding-pumped holmium-doped fibre lasers , 2012, Other Conferences.

[82]  P. Koopmann,et al.  2 µm Laser Sources and Their Possible Applications , 2010 .

[83]  Gerard Mourou,et al.  Compression of amplified chirped optical pulses , 1985 .

[84]  E. Dianov,et al.  Thulium-doped mode-locked all-fiber laser based on NALM and carbon nanotube saturable absorber , 2012, 2012 38th European Conference and Exhibition on Optical Communications.

[85]  R. Vallée,et al.  Writing of Bragg gratings through the polymer jacket of low-loss As2S3 fibers using femtosecond pulses at 800 nm. , 2012, Optics letters.

[86]  Martin Richardson,et al.  All Thulium Fiber CPA System with 107 fs Pulse Duration and 42 nm Bandwidth , 2011 .