On the relationship between fuzzy description logics and many-valued modal logics

Abstract In this paper we study the relationships between a family of ALC -like fuzzy description logics (FDLs) defined over left-continuous t-norms and some many-valued multi-modal logics (MMLs). We analyze these relationships in both directions, that is, how to merge FDLs into MMLs and vice-versa. The analysis starts from the relationships between the languages to reach systematically the deeper level of reasoning tasks. At this level we are able to truly investigate both formalisms from each other point of view. Finally, the results concerning translations between reasoning tasks are applied in order to get decidability and complexity bounds.

[1]  Marco Cerami,et al.  On finitely-valued Fuzzy Description Logics , 2014, Int. J. Approx. Reason..

[2]  Franz Baader Description Logics , 2009, Reasoning Web.

[3]  Marco Cerami,et al.  Finite-Valued Lukasiewicz Modal Logic Is PSPACE-Complete , 2011, IJCAI.

[4]  Rafael Peñaloza,et al.  Decidable Gödel Description Logics without the Finitely-Valued Model Property , 2014, KR.

[5]  Petr Hájek What does mathematical fuzzy logic offer to description logic? , 2006, Fuzzy Logic and the Semantic Web.

[6]  Stefan Borgwardt,et al.  Fuzzy description logics with general concept inclusions , 2014, Joint Workshop of the German Research Training Groups in Computer Science.

[7]  Bruno Teheux,et al.  Extending Łukasiewicz Logics with a Modality: Algebraic Approach to Relational Semantics , 2013, Stud Logica.

[8]  Christopher Tresp,et al.  A Description Logic for Vague Knowledge , 1998, ECAI.

[9]  Xavier Caicedo,et al.  Standard Gödel Modal Logics , 2010, Stud Logica.

[10]  Rafael Peñaloza,et al.  Finite Lattices Do Not Make Reasoning in ALCI Harder , 2011, URSW.

[11]  Franco Montagna,et al.  A Proof of Standard Completeness for Esteva and Godo's Logic MTL , 2002, Stud Logica.

[12]  Umberto Straccia,et al.  General Concept Inclusions inFluzzy Description Logics , 2006, ECAI.

[13]  Joan Torrens,et al.  On a class of operators for expert systems , 1993, Int. J. Intell. Syst..

[14]  Fernando Bobillo,et al.  A Crisp Representation for Fuzzy SHOIN with Fuzzy Nominals and General Concept Inclusions , 2006, URSW.

[15]  Rafael Peñaloza,et al.  The Complexity of Subsumption in Fuzzy EL , 2015, IJCAI.

[16]  Àngel García-Cerdaña,et al.  Fuzzy Description Logics and t-norm based fuzzy logics , 2010, Int. J. Approx. Reason..

[17]  Melvin Fitting,et al.  Many-valued modal logics II , 1992 .

[18]  Lluis Godo,et al.  Basic Fuzzy Logic is the logic of continuous t-norms and their residua , 2000, Soft Comput..

[19]  Marco Cerami,et al.  On Finitely Valued Fuzzy Description Logics: The Łukasiewicz Case , 2012, IPMU.

[20]  Melvin Fitting,et al.  Many-valued modal logics , 1991, Fundam. Informaticae.

[21]  Anna Maria Radzikowska,et al.  Characterisation of main classes of fuzzy relations using fuzzy modal operators , 2005, Fuzzy Sets Syst..

[22]  Rafael Peñaloza,et al.  How Fuzzy Is My Fuzzy Description Logic? , 2012, IJCAR.

[23]  Lluis Godo,et al.  On the Minimum Many-Valued Modal Logic over a Finite Residuated Lattice , 2008, J. Log. Comput..

[24]  Nicola Olivetti,et al.  Towards a Proof Theory of Gödel Modal Logics , 2011, Log. Methods Comput. Sci..

[25]  Nick Bezhanishvili,et al.  Finitely generated free Heyting algebras via Birkhoff duality and coalgebra , 2011, Log. Methods Comput. Sci..

[26]  John Yen,et al.  Generalizing Term Subsumption Languages to Fuzzy Logic , 1991, IJCAI.

[27]  Àngel García-Cerdaña,et al.  On Fuzzy Description Logics , 2008, CCIA.

[28]  Lluis Godo,et al.  On modal extensions of Product fuzzy logic , 2017, J. Log. Comput..

[29]  L. Valverde,et al.  ON MODE AND IMPLICATION IN APPROXIMATE REASONING , 1993 .

[30]  Klaus Schild,et al.  A Correspondence Theory for Terminological Logics: Preliminary Report , 1991, IJCAI.

[31]  Bruno Teheux,et al.  Completeness results for many-valued \Lukasiewicz modal systems and relational semantics , 2006 .

[32]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[33]  Richard E. Ladner,et al.  The Computational Complexity of Provability in Systems of Modal Propositional Logic , 1977, SIAM J. Comput..

[34]  Lluis Godo,et al.  Monoidal t-norm based logic: towards a logic for left-continuous t-norms , 2001, Fuzzy Sets Syst..

[35]  Marco Cerami,et al.  Strict core fuzzy logics and quasi-witnessed models , 2011, Arch. Math. Log..

[36]  Umberto Straccia,et al.  Complexity Sources in Fuzzy Description Logic , 2014, Description Logics.

[37]  Umberto Straccia,et al.  Fuzzy description logics under Gödel semantics , 2009, Int. J. Approx. Reason..

[38]  Petr Hájek Computational complexity of t-norm based propositional fuzzy logics with rational truth constants , 2006, Fuzzy Sets Syst..

[39]  Daniel Sánchez,et al.  Generalizing Quantification in Fuzzy Description Logics , 2004, Fuzzy Days.

[40]  Michael C. Laskowski,et al.  Provability in predicate product logic , 2007, Arch. Math. Log..

[41]  Umberto Straccia,et al.  Mixed Integer Programming, General Concept Inclusions and Fuzzy Description Logics , 2007, EUSFLAT Conf..

[42]  Rafael Peñaloza,et al.  The limits of decidability in fuzzy description logics with general concept inclusions , 2015, Artif. Intell..

[43]  Alexander Borgida,et al.  On the Relative Expressiveness of Description Logics and Predicate Logics , 1996, Artif. Intell..

[44]  Ian Horrocks,et al.  Hybrid Logics and Ontology Languages , 2007, Electron. Notes Theor. Comput. Sci..

[45]  Umberto Straccia,et al.  Reasoning within Fuzzy Description Logics , 2011, J. Artif. Intell. Res..

[46]  Petr Hájek,et al.  Making fuzzy description logic more general , 2005, Fuzzy Sets Syst..