Fifty Years of Quasars: Physical Insights and Potential for Cosmology
暂无分享,去创建一个
D. Dultzin | M. D’Onofrio | P. Marziani | A. D. Olmo | J. Sulentic | J. W. Sulentic | P. Marziani | M. D'Onofrio | D. Dultzin | A. del Olmo | M. D’Onofrio
[1] M. Schoeller,et al. The central dusty torus in the active nucleus of NGC 1068 , 2004, Nature.
[2] Knud Jahnke,et al. Discovery of a bright quasar without a massive host galaxy , 2005, Nature.
[3] T. Zwitter,et al. Searching for the Physical Drivers of the Eigenvector 1 Correlation Space , 2001, astro-ph/0105343.
[4] M. D’Onofrio,et al. Fifty years of quasars : from early observations and ideas to future research , 2012 .
[5] P. Marziani,et al. VLT/ISAAC spectra of the Hβ region in intermediate-redshift quasars II. Black hole mass and Eddington ratio , , 2004, 0812.0251.
[6] D. Valls-Gabaud,et al. Super-Eddington accreting massive black holes as long-lived cosmological standards. , 2013, Physical review letters.
[7] D. Dultzin. Narrow-Line Seyfert 1s: a luminosity dependent definition , 2011 .
[8] K. M. Merrill,et al. Compact extragalactic nonthermal sources. , 1972 .
[9] Granada,et al. Detailed characterization of Hβ emission line profile in low‐z SDSS quasars , 2009, 0912.4306.
[10] T. Lauer,et al. Observing Dark Energy , 2005 .
[11] M. Schmidt,et al. 3C 273 : A Star-Like Object with Large Red-Shift , 1963, Nature.
[12] P. Marziani,et al. Highly accreting quasars: sample definition and possible cosmological implications , 2014, 1405.2727.
[13] Ž. Ivezić,et al. AGN Dusty Tori. II. Observational Implications of Clumpiness , 2008, 0806.0512.
[14] R. Zamanov,et al. Kinematic Linkage between the Broad- and Narrow-Line-emitting Gas in Active Galactic Nuclei , 2002, astro-ph/0207387.
[15] D. Lynden-Bell,et al. Galactic Nuclei as Collapsed Old Quasars , 1969, Nature.
[16] T. Boroson,et al. The Emission-Line Properties of Low-Redshift Quasi-stellar Objects , 1992 .
[17] Ljubljana,et al. The Demise of the Classical Broad-Line Region in the Luminous Quasar PG 1416–129 , 2000, astro-ph/0009326.
[18] T. Zwitter,et al. An Optical Spectroscopic Atlas of Low-Redshift Active Galactic Nuclei , 2003 .
[19] THE QUASI-STELLAR RADIO SOURCES 3C 48 AND 3C 273 , 1964 .
[20] E. Branchini,et al. A NEW COSMOLOGICAL DISTANCE MEASURE USING ACTIVE GALACTIC NUCLEUS X-RAY VARIABILITY , 2014, 1404.2607.
[21] Richard G. McMahon,et al. A luminous quasar at a redshift of z = 7.085 , 2011, Nature.
[22] P. Marziani,et al. Phenomenology of Broad Emission Lines in Active Galactic Nuclei , 2000 .
[23] J. Lasota,et al. Slim Accretion Disks , 1988 .
[24] Maarten Schmidt,et al. Space Distribution and Luminosity Functions of Quasi-Stellar Radio Sources , 1968 .
[25] P. Marziani,et al. Comparative Analysis of the High- and Low-Ionization Lines in the Broad-Line Region of Active Galactic Nuclei , 1996 .
[26] R. Zamanov,et al. Average Quasar Spectra in the Context of Eigenvector 1 , 2002, astro-ph/0201362.
[27] S. Bianchi. A new cosmological distance measure using AGN X-ray variability , 2014 .
[28] Martin P. Ward,et al. Seyfert galaxies as X-ray sources , 1978 .
[29] D. Dultzin,et al. BROAD-LINE REGION PHYSICAL CONDITIONS IN EXTREME POPULATION A QUASARS: A METHOD TO ESTIMATE CENTRAL BLACK HOLE MASS AT HIGH REDSHIFT , 2011, 1107.3188.
[30] M. Calvani,et al. VLT/ISAAC spectra of the Hβ region in intermediate redshift quasars , 2004 .
[31] D. Dultzin,et al. C IV λ1549 as an Eigenvector 1 Parameter for Active Galactic Nuclei , 2007, 0705.1895.
[32] J. H. Mack,et al. DETECTION OF X-RAY EMISSION FROM 3C 273 AND NGC 5128. , 1970 .
[33] A. Laor. On the Nature of Low-Luminosity Narrow-Line Active Galactic Nuclei , 2003, astro-ph/0302541.
[34] J. Sulentic. Toward a classification scheme for broad-line profiles in active galactic nuclei , 1989 .
[35] M. D’Onofrio,et al. Fifty Years of Quasars , 2012 .
[36] Searching for the physical drivers of eigenvector 1: influence of black hole mass and Eddington ratio , 2003, astro-ph/0307367.
[37] C. K. Seyfert. Nuclear Emission in Spiral Nebulae. , 1943 .
[38] P. Marziani,et al. Quasar Outflows: in the 4D Eigenvector 1 Context , 2012, 1210.2059.
[39] Edwin E. Salpeter,et al. Accretion of Interstellar Matter by Massive Objects. , 1964 .
[40] J. S. Hey,et al. Solar Radiations in the 4–6 Metre Radio Wave-Length Band , 1946, Nature.
[41] New insights on the QSO radio‐loud/radio‐quiet dichotomy: SDSS spectra in the context of the 4D eigenvector1 parameter space , 2008, 0804.0788.