Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Temperature Analysis

We present new full-sky temperature maps in five frequency bands from 23 to 94 GHz, based on data from the first 3 years of the WMAP sky survey. The new maps are consistent with the first-year maps and are more sensitive. The 3 year maps incorporate several improvements in data processing made possible by the additional years of data and by a more complete analysis of the polarization signal. These include several new consistency tests as well as refinements in the gain calibration and beam response models. We employ two forms of multifrequency analysis to separate astrophysical foreground signals from the CMB, each of which improves on our first-year analyses. First, we form an improved "Internal Linear Combination" (ILC) map, based solely on WMAP data, by adding a bias-correction step and by quantifying residual uncertainties in the resulting map. Second, we fit and subtract new spatial templates that trace Galactic emission; in particular, we now use low-frequency WMAP data to trace synchrotron emission instead of the 408 MHz sky survey. The WMAP point source catalog is updated to include 115 new sources whose detection is made possible by the improved sky map sensitivity. We derive the angular power spectrum of the temperature anisotropy using a hybrid approach that combines a maximum likelihood estimate at low l (large angular scales) with a quadratic cross-power estimate for l > 30. The resulting multifrequency spectra are analyzed for residual point source contamination. At 94 GHz the unmasked sources contribute 128 ± 27 μK2 to l(l + 1)Cl/2π at l = 1000. After subtracting this contribution, our best estimate of the CMB power spectrum is derived by averaging cross-power spectra from 153 statistically independent channel pairs. The combined spectrum is cosmic variance limited to l = 400, and the signal-to-noise ratio per l-mode exceeds unity up to l = 850. For bins of width Δl/l = 3%, the signal-to-noise ratio exceeds unity up to l = 1000. The first two acoustic peaks are seen at l = 220.8 ± 0.7 and l = 530.9 ± 3.8, respectively, while the first two troughs are seen at l = 412.4 ± 1.9 and l = 675.2 ± 11.1. The rise to the third peak is unambiguous; when the WMAP data are combined with higher resolution CMB measurements, the existence of a third acoustic peak is well established. Spergel et al. use the 3 year temperature and polarization data to constrain cosmological model parameters. A simple six-parameter ΛCDM model continues to fit CMB data and other measures of large-scale structure remarkably well. The new polarization data produce a better measurement of the optical depth to reionization, τ = 0.089 ± 0.03. This new and tighter constraint on τ helps break a degeneracy with the scalar spectral index, which is now found to be ns = 0.960 ± 0.016. If additional cosmological data sets are included in the analysis, the spectral index is found to be ns = 0.947 ± 0.015.

[1]  Rajib Saha,et al.  A Reanalysis of the 3 Year Wilkinson Microwave Anisotropy Probe Temperature Power Spectrum and Likelihood , 2007 .

[2]  Edward J. Wollack,et al.  Three Year Wilkinson Microwave Anistropy Probe (WMAP) Observations: Polarization Analysis , 2006, astro-ph/0603450.

[3]  K. Gorski,et al.  A Reanalysis of the 3 Year Wilkinson Microwave Anisotropy Probe Temperature Power Spectrum and Likelihood , 2006, astro-ph/0606088.

[4]  Edward J. Wollack,et al.  Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Beam Profiles, Data Processing, Radiometer Characterization, and Systematic Error Limits , 2006, astro-ph/0603452.

[5]  F. Atrio-Barandela,et al.  The Contribution of the Intergalactic Medium to Cosmic Microwave Background Anisotropies , 2006, astro-ph/0601424.

[6]  R. Rebolo,et al.  Observations of the cosmic microwave background and galactic foregrounds at 12–17-GHz with the COSMOSOMAS experiment , 2006, astro-ph/0601203.

[7]  J. Silk,et al.  Non-parametric reconstruction of the primordial power spectrum at horizon scales from WMAP data , 2005, astro-ph/0509478.

[8]  A. Melchiorri,et al.  A Measurement of the Angular Power Spectrum of the CMB Temperature Anisotropy from the 2003 Flight of BOOMERANG , 2005, astro-ph/0507494.

[9]  K. Land,et al.  Examination of evidence for a preferred axis in the cosmic radiation anisotropy. , 2005, Physical review letters.

[10]  Yen-Ting Lin,et al.  Wilkinson Microwave Anisotropy Probe Constraints on the Intracluster Medium , 2005 .

[11]  E. Branchini,et al.  A full-sky prediction of the Sunyaev—Zeldovich effect from diffuse hot gas in the local universe and the upper limit from the WMAP data , 2005, astro-ph/0502227.

[12]  Richard J. Davis,et al.  Source subtraction for the extended Very Small Array and 33-GHz source count estimates , 2004, astro-ph/0412605.

[13]  D. Mesa,et al.  Predictions for high-frequency radio surveys of extragalactic sources , 2004, astro-ph/0410709.

[14]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[15]  Amber D. Miller,et al.  How accurately can suborbital experiments measure the CMB , 2004, astro-ph/0406375.

[16]  Jérôme Martin,et al.  Exploring the superimposed oscillations parameter space , 2004, hep-ph/0405249.

[17]  E. Hivon,et al.  Unbiased estimation of an angular power spectrum , 2004, astro-ph/0402428.

[18]  R. Ekers,et al.  First results from the Australia Telescope Compact Array 18‐GHz pilot survey , 2004 .

[19]  Yen-Ting Lin,et al.  WMAP constraints on the Intra-Cluster Medium , 2004, astro-ph/0408560.

[20]  P. Lilje,et al.  Power Spectrum Estimation from High-Resolution Maps by Gibbs Sampling , 2004, astro-ph/0407028.

[21]  K. Gorski,et al.  Cosmological parameters and the WMAP data revisited , 2004, astro-ph/0406232.

[22]  J. Weeks,et al.  Polynomial interpretation of multipole vectors , 2004, astro-ph/0405631.

[23]  C. Renault,et al.  XSPECT, estimation of the angular power spectrum by computing cross-power spectra with analytical error bars , 2004, astro-ph/0405575.

[24]  T. Souradeep,et al.  CMB power spectrum estimation using noncircular beams , 2004, astro-ph/0405406.

[25]  K. Gorski,et al.  Low‐order multipole maps of cosmic microwave background anisotropy derived from WMAP , 2004, astro-ph/0405007.

[26]  K. Gorski,et al.  Testing the cosmological principle of isotropy: Local power spectrum estimates of the WMAP data , 2004, astro-ph/0404206.

[27]  D. Huterer,et al.  Is the low-l microwave background cosmic? , 2004, Physical review letters.

[28]  A. Readhead,et al.  Anomalous Radio Emission from Dust in the Helix , 2004 .

[29]  H. K. Eriksen,et al.  On Foreground Removal from the Wilkinson Microwave Anisotropy Probe Data by an Internal Linear Combination Method: Limitations and Implications , 2004, astro-ph/0403098.

[30]  A. Slosar,et al.  Exact likelihood evaluations and foreground marginalization in low resolution WMAP data , 2004, astro-ph/0403073.

[31]  G. Efstathiou,et al.  A maximum likelihood analysis of the low cosmic microwave background multipoles from the Wilkinson Microwave Anisotropy Probe , 2004 .

[32]  J. Bond,et al.  Extended Mosaic Observations with the Cosmic Background Imager , 2004, astro-ph/0402359.

[33]  C. Hernandez-Monteagudo,et al.  On the presence of thermal Sunyaev—Zel'dovich induced signal in the first-year WMAP temperature maps , 2004 .

[34]  T. Souradeep,et al.  Primordial power spectrum from WMAP , 2003, astro-ph/0312174.

[35]  A. Lasenby,et al.  The Quest for Microwave Foreground X , 2003, astro-ph/0312039.

[36]  D. Huterer,et al.  Multipole vectors - A New representation of the CMB sky and evidence for statistical anisotropy or non-Gaussianity at 2 <= l <= 8 , 2003, astro-ph/0310511.

[37]  Jérôme Martin,et al.  Superimposed oscillations in the WMAP data , 2003, astro-ph/0310382.

[38]  A. Lewis Cosmological Parameters and the WMAP Data , 2003, astro-ph/0310186.

[39]  Andrew H. Jaffe,et al.  Large-scale power in the CMB and new physics: An analysis using Bayesian model comparison , 2003, astro-ph/0308461.

[40]  Y. Loh,et al.  Cross - correlation of the Cosmic Microwave Background with the 2MASS galaxy survey: Signatures of dark energy, hot gas, and point sources , 2003, astro-ph/0308260.

[41]  Matias Zaldarriaga,et al.  Significance of the largest scale CMB fluctuations in WMAP , 2003, astro-ph/0307282.

[42]  M. Halpern,et al.  First Year Wilkinson Microwave Anisotropy Probe Observations: Dark Energy Induced Correlation with Radio Sources , 2003, astro-ph/0305097.

[43]  G. Longo,et al.  Observing, Thinking and Mining the Universe , 2004 .

[44]  E. Gaztañaga,et al.  Two‐point anisotropies in WMAP and the cosmic quadrupole , 2003 .

[45]  G. Patanchon Multi-component power spectra estimation method for multi-detector observations of the Cosmic Microwave Background , 2003, astro-ph/0311305.

[46]  G. Efstathiou A Maximum Likelihood Analysis of the Low CMB Multipoles from WMAP , 2003, astro-ph/0310207.

[47]  M. Halpern,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Implications For Inflation , 2003 .

[48]  G. Efstathiou Myths and truths concerning estimation of power spectra: the case for a hybrid estimator , 2003, astro-ph/0307515.

[49]  Pablo Fosalba,et al.  Measurement of the gravitational potential evolution from the cross‐correlation between WMAP and the APM Galaxy Survey , 2003, astro-ph/0305468.

[50]  Michael E. Jones,et al.  9C: a survey of radio sources at 15 GHz with the Ryle Telescope , 2003, astro-ph/0304275.

[51]  Max Tegmark,et al.  High resolution foreground cleaned CMB map from WMAP , 2003, astro-ph/0302496.

[52]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results , 2003, astro-ph/0302207.

[53]  Edward J. Wollack,et al.  First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Foreground Emission , 2003, astro-ph/0302208.

[54]  M. Halpern,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Beam Profiles and Window Functions , 2003, astro-ph/0302214.

[55]  M. Halpern,et al.  SUBMITTED TO The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 11/12/01 FIRST YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: INTERPRETATION OF THE TT AND TE ANGULAR POWER SPECTRUM PEAKS , 2022 .

[56]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Galactic Signal Contamination from Sidelobe Pickup , 2003, astro-ph/0302215.

[57]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Parameter Estimation Methodology , 2003, astro-ph/0302218.

[58]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Data Processing Methods and Systematic Error Limits , 2003, astro-ph/0302222.

[59]  M. Halpern,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: On-Orbit Radiometer Characterization , 2003, astro-ph/0302224.

[60]  M. Halpern,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Tests of Gaussianity , 2003 .

[61]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters , 2003, astro-ph/0302209.

[62]  M. Halpern,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: The Angular Power Spectrum , 2003, astro-ph/0302217.

[63]  Douglas P. Finkbeiner,et al.  A Full-Sky Hα Template for Microwave Foreground Prediction , 2003, astro-ph/0301558.

[64]  Edward J. Wollack,et al.  The Optical Design and Characterization of the Microwave Anisotropy Probe , 2003, astro-ph/0301160.

[65]  C. L. Kuo,et al.  High-Resolution Observations of the Cosmic Microwave Background Power Spectrum with ACBAR , 2002, astro-ph/0212289.

[66]  Edward J. Wollack,et al.  The MAP Satellite Feed Horns , 2002, astro-ph/0301159.

[67]  G. Granato,et al.  Far infrared and radio emission in dusty starburst galaxies , 2002, astro-ph/0206029.

[68]  E. Komatsu,et al.  The Sunyaev-Zel'dovich angular power spectrum as a probe of cosmological parameters , 2002, astro-ph/0205468.

[69]  C. B. Netterfield,et al.  MASTER of the Cosmic Microwave Background Anisotropy Power Spectrum: A Fast Method for Statistical Analysis of Large and Complex Cosmic Microwave Background Data Sets , 2001, astro-ph/0105302.

[70]  Max Tegmark,et al.  A New Spin on Galactic Dust , 2000, astro-ph/0010527.

[71]  William H. Press,et al.  Numerical recipes in C , 2002 .

[72]  Jeffrey W. Percival,et al.  The Wisconsin Hα Mapper Northern Sky Survey , 2001 .

[73]  P. McCullough,et al.  An Alternative to Spinning Dust for the Microwave Emission of LPH 201.663+1.643: An Ultracompact H II Region , 2001, astro-ph/0201286.

[74]  D. Schlegel,et al.  Tentative Detection of Electric Dipole Emission from Rapidly Rotating Dust Grains , 2001, astro-ph/0109534.

[75]  D. Van Buren,et al.  A Robotic Wide‐Angle Hα Survey of the Southern Sky , 2001, astro-ph/0108518.

[76]  T. Souradeep,et al.  Window Function for Noncircular Beam Cosmic Microwave Background Anisotropy Experiment , 2001, astro-ph/0105270.

[77]  H. Teräsranta,et al.  Search for new flat-spectrum radio sources , 2001 .

[78]  L. Haffner The Wisconsin H-Alpha Mapper Northern Sky Survey of Galactic Ionized Hydrogen , 2000, astro-ph/0112232.

[79]  K. Gorski,et al.  Fast convolution on the sphere , 2000, astro-ph/0008227.

[80]  J. Borrill,et al.  Asymmetric Beams in Cosmic Microwave Background Anisotropy Experiments , 2000, astro-ph/0007212.

[81]  K. Gorski,et al.  Cosmic microwave background anisotropy power spectrum statistics for high precision cosmology , 1998, astro-ph/9808292.

[82]  H Germany,et al.  The Deep X-Ray Radio Blazar Survey (DXRBS) — II. New identifications , 2000, astro-ph/0012356.

[83]  L. Gurvits,et al.  The VSOP 5 GHz AGN Survey I. Compilation and Observations , 2000 .

[84]  S. Myers,et al.  A Measurement of Anisotropy in the Cosmic Microwave Background on 7'–22' Scales , 2000 .

[85]  D. Spergel,et al.  Extragalactic Foregrounds of the Cosmic Microwave Background: Prospects for the MAP Mission , 1998, astro-ph/9806349.

[86]  Atsunori Yonehara,et al.  Publications of the Astronomical Society of Australia , 2000 .

[87]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[88]  David J. Schlegel,et al.  Extrapolation of Galactic Dust Emission at 100 Microns to Cosmic Microwave Background Radiation Frequencies Using FIRAS , 1999, astro-ph/9905128.

[89]  Jones,et al.  Cross-Correlation of Tenerife Data with Galactic Templates—Evidence for Spinning Dust? , 1999, The Astrophysical journal.

[90]  A. Lasenby,et al.  The Tenerife Cosmic Microwave Background Maps: Observations and First Analysis , 1999, astro-ph/9903196.

[91]  A. Lazarian,et al.  Magnetic Dipole Microwave Emission from Dust Grains , 1998, astro-ph/9807009.

[92]  ApJ, in press , 1999 .

[93]  D. J. Fixsen,et al.  Calibrator Design for the COBE Far Infrared Absolute Spectrophotometer (FIRAS) , 1998, astro-ph/9810373.

[94]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[95]  David N. Spergel,et al.  An Efficient Technique to Determine the Power Spectrum from Cosmic Microwave Background Sky Maps , 1998, astro-ph/9805339.

[96]  N. Odegard,et al.  The COBE Diffuse Infrared Background Experiment Search for the Cosmic Infrared Background. III. Separation of Galactic Emission from the Infrared Sky Brightness , 1998, astro-ph/9805323.

[97]  B. Dennison,et al.  An Imaging Survey of Northern Galactic Hα Emission with Arcminute Resolution , 1998, Publications of the Astronomical Society of Australia.

[98]  Paolo Giommi,et al.  The Deep X-Ray Radio Blazar Survey. I. Methods and First Results , 1998, astro-ph/9801024.

[99]  C. Burigana,et al.  Extragalactic source counts and contributions to the anisotropies of the cosmic microwave background: predictions for the Planck Surveyor mission , 1997, astro-ph/9711085.

[100]  U. Toronto,et al.  Estimating the power spectrum of the cosmic microwave background , 1997, astro-ph/9708203.

[101]  J. Borrill Power spectrum estimators for large CMB datasets , 1997, astro-ph/9712121.

[102]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[103]  A. Lazarian,et al.  Diffuse Galactic Emission from Spinning Dust Grains , 1997, astro-ph/9710152.

[104]  H. Rottgering,et al.  The Westerbork Northern Sky Survey (WENSS) I. A 570 square degree Mini-Survey around the North Ecliptic Pole ? , 1997 .

[105]  S. Myers,et al.  An Anomalous Component of Galactic Emission , 1997, astro-ph/9705241.

[106]  Edward J. Wollack,et al.  Galactic Microwave Emission at Degree Angular Scales , 1997, astro-ph/9702172.

[107]  A. Hamilton,et al.  Towards optimal measurement of power spectra - I. Minimum variance pair weighting and the Fisher matrix , 1997, astro-ph/9701008.

[108]  A. Hamilton Towards optimal measurement of power spectra - II. A basis of positive, compact, statistically orthogonal kernels , 1997, astro-ph/9701009.

[109]  Max Tegmark How to measure CMB power spectra without losing information , 1996, astro-ph/9611174.

[110]  U. Seljak,et al.  A Line of sight integration approach to cosmic microwave background anisotropies , 1996, astro-ph/9603033.

[111]  R. Ekers,et al.  The Parkes-MIT-NRAO (PMN) Surveys. VIII. Source Catalog for the Zenith Survey (-37.0 degrees < delta < -29.0 degrees ) , 1996 .

[112]  Charles L. Bennett,et al.  High-Latitude Galactic Emission in the COBE Differential Microwave Radiometer 2 Year Sky Maps , 1996 .

[113]  J. Huchra,et al.  Properties of the X-ray-brightest Abell-type clusters of galaxies (XBACs) from ROSAT All-Sky Survey data - I. The sample , 1996, astro-ph/9602080.

[114]  Max Tegmark,et al.  A method for subtracting foregrounds from multifrequency CMB sky maps , 1995, astro-ph/9507009.

[115]  P. Gregory,et al.  The GB6 Catalog of Radio Sources , 1996 .

[116]  C. Lawrence,et al.  A Measurement of the Sunyaev-Zel'dovich Effect in the Coma Cluster of Galaxies , 1995 .

[117]  R. Ekers,et al.  The Parkes-MIT-NRAO (PMN) surveys. 6: Source catalog for the equatorial survey (-9.5 deg less than delta less than +10.0 deg) , 1995 .

[118]  Alan E. Wright,et al.  The Parkes-MIT-NRAO (PMN) surveys. 2: Source catalog for the southern survey (delta greater than -87.5 deg and less than -37 deg) , 1994 .

[119]  R. Ekers,et al.  The Parkes-MIT-NRAO (PMN) surveys. 3: Source catalog for the tropical survey (-29 deg less than delta less than -9 deg .5) , 1994 .

[120]  S. Boughn,et al.  Limits of Gaussian fluctuations in the cosmic microwave background at 19.2 GHz , 1992 .

[121]  James J. Condon,et al.  Radio Emission from Normal Galaxies , 1992 .

[122]  Implications of the correlation between radio and far-infrared emission for spiral galaxies , 1990, Monthly Notices of the Royal Astronomical Society.

[123]  Nicholas A. Devereux,et al.  A reevaluation of the infrared-radio correlation for spiral galaxies , 1989 .

[124]  G. Helou,et al.  The infrared-to-radio ratio within NGC 5236 (M83) and NGC 6946 , 1989 .

[125]  The relationship between the radio and far-infrared emission in IRAS galaxies: VLA observations of a large well-defined sample at 1420 MHz , 1989 .

[126]  D. Sanders,et al.  21 centimeter survey of luminous infrared galaxies , 1988 .

[127]  A two-temperature model for the infrared and radio emission from late-type galaxies , 1988 .

[128]  K. Lawson,et al.  Variations in the spectral index of the galactic radio continuum emission in the northern hemisphere , 1987 .

[129]  G. Gavazzi,et al.  On the Dependence of Far-Infrared and Radio Continuum Luminosities on Hubble Type in Spiral Galaxies , 1986 .

[130]  D. Sanders,et al.  CO detections and IRAS observations of bright radio spiral galaxies at cz equal or less than 9000 kilometers per second , 1985 .

[131]  George Helou,et al.  Thermal infrared and nonthermal radio: remarkable correlation in disks of galaxies , 1985 .

[132]  E. Salpeter,et al.  1.4 GHz continuum sources in the Hercules cluster , 1984 .

[133]  An investigation of the star-burst model for radio emission from Seyfert galaxies. , 1982 .

[134]  M. G. Hauser,et al.  Statistical analysis of catalogs of extragalactic objects. III - The Shane-Wirtanen and Zwicky catalogs , 1974 .

[135]  M. G. Hauser,et al.  Statistical analysis of catalogs of extragalactic objects. II - The Abell catalog of rich clusters , 1973 .

[136]  Phillip James Edwin Peebles,et al.  Statistical analysis of catalogs of extragalactic objects. I. Theory , 1973 .

[137]  W. C. Erickson A Mechanism of Non-Thermal Radio-Noise Origin. , 1957 .

[138]  October I Physical Review Letters , 2022 .