The Complete Set Simulation of Stochastic Sequences without Repeated and Skipped Elements

Random sequences are widely used in theoretical and practical areas of interests in human and technical activities. An important part of these fields is referred to as the procedures of producing stochastic values. One direction adapts the sequenced generating of pseudorandom numbers and the other direction uses all stochastic sequences in objects of completed sets. The first direction is well studied and is traditionally used in cryptography and technical systems in medical and biological trials. The second direction is generally used in systems for preliminary universal testing where all or characteristically important sequences belong to a given diapason of actions are required. In this current work we explore the second direction, where the underlying approaches in modern generators of random numbers are considered. The simulation of complete sets of random numbers shows that either skipping or repeating of generated values is possible. We’ve formed the requirements that if followed, the problems of skipping and repeating are overcome. Next, we’ve proposed novel algorithms to form completed ranked sets of random sequences. Also, we’ve proposed novel algorithms on the basis of factorial expansion of random numbers which provide fast generation of such sequences. A discussion of the advantages and disadvantages of the indicated statements completes this paper.

[1]  Stephen F. Bush,et al.  Information assurance through Kolmogorov complexity , 2001, Proceedings DARPA Information Survivability Conference and Exposition II. DISCEX'01.

[2]  Benny Pinkas,et al.  Cryptanalysis of the random number generator of the Windows operating system , 2009, TSEC.

[3]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[4]  István Miklós,et al.  Stochastic models of sequence evolution including insertion—deletion events , 2009, Statistical methods in medical research.

[5]  P. Hellekalek Good random number generators are (not so) easy to find , 1998 .

[6]  Yu. A. Menyaev,et al.  Experience in development of therapeutic photomatrix equipment , 2006, Meditsinskaia tekhnika.

[7]  M.E. Hellman,et al.  Privacy and authentication: An introduction to cryptography , 1979, Proceedings of the IEEE.

[8]  Takuji Nishimura,et al.  Tables of 64-bit Mersenne twisters , 2000, TOMC.

[9]  G. Winskel What Is Discrete Mathematics , 2007 .

[10]  Janez Brest,et al.  A comprehensive review of firefly algorithms , 2013, Swarm Evol. Comput..

[11]  Mohammad Reza Meybodi,et al.  Efficient stochastic algorithms for document clustering , 2013, Inf. Sci..

[12]  Prabhakar Raghavan,et al.  Randomized algorithms and pseudorandom numbers , 1988, STOC '88.

[13]  Takuji Nishimura,et al.  Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.

[14]  N. Kasdin Discrete simulation of colored noise and stochastic processes and 1/fα power law noise generation , 1995, Proc. IEEE.

[15]  V. Zharov,et al.  Preclinical photoacoustic models: application for ultrasensitive single cell malaria diagnosis in large vein and artery. , 2016, Biomedical optics express.

[16]  Mazen A. Juratli,et al.  Real-Time Label-Free Embolus Detection Using In Vivo Photoacoustic Flow Cytometry , 2016, PloS one.

[17]  Kai Liu,et al.  A fast divisive clustering algorithm using an improved discrete particle swarm optimizer , 2010, Pattern Recognit. Lett..

[18]  A. M. Turing,et al.  Computing Machinery and Intelligence , 1950, The Philosophy of Artificial Intelligence.

[19]  T. Velmurugan,et al.  Computational Complexity between K-Means and K-Medoids Clustering Algorithms for Normal and Uniform Distributions of Data Points , 2010 .

[20]  Xin-She Yang,et al.  Firefly algorithm, stochastic test functions and design optimisation , 2010, Int. J. Bio Inspired Comput..

[21]  Yulian A. Menyaev,et al.  Parametrical Tuning of Twisting Generators , 2016, J. Comput. Sci..

[22]  Achintya Das,et al.  Analysis of a Nature Inspired Firefly Algorithm based Back-propagation Neural Network Training , 2012, ArXiv.

[23]  Kai Ming Ting,et al.  A general stochastic clustering method for automatic cluster discovery , 2011, Pattern Recognit..

[24]  Thomas M. Cover,et al.  Elements of information theory (2. ed.) , 2006 .

[25]  V. Zharov,et al.  In Vivo Long-Term Monitoring of Circulating Tumor Cells Fluctuation during Medical Interventions , 2015, PloS one.

[26]  Stefan Wegenkittl,et al.  Inversive and linear congruential pseudorandom number generators in empirical tests , 1997, TOMC.

[27]  S. Devadas,et al.  PUF-Based Random Number Generation , 2004 .

[28]  S. K. Park,et al.  Random number generators: good ones are hard to find , 1988, CACM.

[29]  Kamran Iqbal,et al.  A multi-modal virtual environment with text-independent real-time speaker identification , 2004, IEEE Sixth International Symposium on Multimedia Software Engineering.

[30]  Ueli Maurer,et al.  A universal statistical test for random bit generators , 1990, Journal of Cryptology.

[31]  Mani Arora,et al.  An Algorithm To Reduce The Size Of Cipher Text , 2010 .

[32]  P. M. Cohn,et al.  Algebra (2nd edition): volume 3 , by P.M. Cohn. Pp 474. £55. 1990. ISBN 0-471-92840-2 (Wiley) , 1992 .

[33]  Ming Li,et al.  An Introduction to Kolmogorov Complexity and Its Applications , 2019, Texts in Computer Science.

[34]  Anil K. Jain Data clustering: 50 years beyond K-means , 2008, Pattern Recognit. Lett..

[35]  David Pointcheval,et al.  Security analysis of pseudo-random number generators with input: /dev/random is not robust , 2013, CCS.

[36]  Sandeep Sharma,et al.  MDS Algorithm for Encryption , 2015, J. Comput. Sci..

[37]  Peter Hellekalek,et al.  Empirical evidence concerning AES , 2003, TOMC.

[38]  Mustafa Sarimollaoglu,et al.  In vivo photoacoustic flow cytometry for early malaria diagnosis , 2016, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[39]  John Elder,et al.  Practical Text Mining and Statistical Analysis for Non-structured Text Data Applications , 2012 .

[40]  Whitfield Diffie,et al.  New Directions in Cryptography , 1976, IEEE Trans. Inf. Theory.

[41]  Mazen A. Juratli,et al.  Nonlinear photoacoustic signal amplification from single targets in absorption background , 2013, Photoacoustics.

[42]  A. Kolmogorov Three approaches to the quantitative definition of information , 1968 .

[43]  Chris S. Wallace Fast pseudorandom generators for normal and exponential variates , 1996, TOMS.

[44]  Hinrich Schütze,et al.  Introduction to information retrieval , 2008 .

[45]  V. Zharov,et al.  In vivo photoacoustic time-of-flight velocity measurement of single cells and nanoparticles. , 2011, Optics letters.

[46]  G. Edward Suh,et al.  Design and implementation of the AEGIS single-chip secure processor using physical random functions , 2005, 32nd International Symposium on Computer Architecture (ISCA'05).

[47]  Vladimir P. Zharov,et al.  Combined photovacuum therapy of copulative dysfunction , 2006, SPIE BiOS.

[48]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[49]  Xin-She Yang,et al.  Nature-Inspired Metaheuristic Algorithms , 2008 .

[50]  Dervis Karaboga,et al.  A novel clustering approach: Artificial Bee Colony (ABC) algorithm , 2011, Appl. Soft Comput..

[51]  Mustafa Sarimollaoglu,et al.  Optical clearing in photoacoustic flow cytometry. , 2013, Biomedical optics express.

[52]  N. Jeremy Usdin,et al.  Discrete Simulation of Colored Noise and Stochastic Processes and llf" Power Law Noise Generation , 1995 .

[53]  Stefan Wegenkittl,et al.  Entropy estimators and serial tests for ergodic chains , 2001, IEEE Trans. Inf. Theory.

[54]  Russell L. Malmberg,et al.  Memory efficient alignment between RNA sequences and stochastic grammar models of pseudoknots , 2006, Int. J. Bioinform. Res. Appl..

[55]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[56]  S. Fomin,et al.  Elements of the Theory of Functions and Functional Analysis , 1961 .

[57]  Mustafa Sarimollaoglu,et al.  Photoacoustic Flow Cytometry for Single Sickle Cell Detection In Vitro and In Vivo , 2016, Analytical cellular pathology.

[58]  M. McConnell Information assurance in the twenty-first century , 2002 .

[59]  L. M. M.-T. Theory of Probability , 1929, Nature.

[60]  Manuel Blum,et al.  A Simple Unpredictable Pseudo-Random Number Generator , 1986, SIAM J. Comput..