A Brøndsted–Rockafellar Theorem for Diagonal Subdifferential Operators
暂无分享,去创建一个
[1] E. Beckenbach. CONVEX FUNCTIONS , 2007 .
[2] Bastian Goldlücke,et al. Variational Analysis , 2014, Computer Vision, A Reference Guide.
[3] Nicolas Hadjisavvas,et al. Local boundedness of monotone bifunctions , 2012, J. Glob. Optim..
[4] Alfredo N. Iusem,et al. On Diagonal Subdifferential Operators in Nonreflexive Banach Spaces , 2012 .
[5] Approaching the maximal monotonicity of bifunctions via representative functions , 2011, 1105.5550.
[6] A. Iusem. On the Maximal Monotonicity of Diagonal Subdifferential Operators , 2010 .
[7] Hadi Khatibzadeh,et al. Maximal monotonicity of bifunctions , 2010 .
[8] B. Svaiter,et al. Bronsted-Rockafellar property and maximality of monotone operators representable by convex functions in non-reflexive Banach spaces , 2008, 0802.1895.
[9] S. Simons. From Hahn-Banach to monotonicity , 2008 .
[10] G. Kassay,et al. Existence of equilibria via Ekeland's principle , 2005 .
[11] C. Zălinescu. Convex analysis in general vector spaces , 2002 .
[12] W. Oettli,et al. From optimization and variational inequalities to equilibrium problems , 1994 .
[13] R. Phelps. Convex Functions, Monotone Operators and Differentiability , 1989 .
[14] Jonathan M. Borwein,et al. A NOTE ON "-SUBGRADIENTS AND MAXIMAL MONOTONICITY , 1982 .
[15] D. Varberg. Convex Functions , 1973 .
[16] R. Rockafellar,et al. On the subdifferentiability of convex functions , 1965 .