Vessel enhancing diffusion: A scale space representation of vessel structures

A method is proposed to enhance vascular structures within the framework of scale space theory. We combine a smooth vessel filter which is based on a geometrical analysis of the Hessian's eigensystem, with a non-linear anisotropic diffusion scheme. The amount and orientation of diffusion depend on the local vessel likeliness. Vessel enhancing diffusion (VED) is applied to patient and phantom data and compared to linear, regularized Perona-Malik, edge and coherence enhancing diffusion. The method performs better than most of the existing techniques in visualizing vessels with varying radii and in enhancing vessel appearance. A diameter study on phantom data shows that VED least affects the accuracy of diameter measurements. It is shown that using VED as a preprocessing step improves level set based segmentation of the cerebral vasculature, in particular segmentation of the smaller vessels of the vasculature.

[1]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Tony Lindeberg,et al.  Edge Detection and Ridge Detection with Automatic Scale Selection , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[3]  Guido Gerig,et al.  Multiscale detection of curvilinear structures in 2-D and 3-D image data , 1995, Proceedings of IEEE International Conference on Computer Vision.

[4]  J M Bland,et al.  Statistical methods for assessing agreement between two methods of clinical measurement , 1986 .

[5]  Karl Krissian,et al.  Flux-based anisotropic diffusion applied to enhancement of 3-D angiogram , 2002, IEEE Transactions on Medical Imaging.

[6]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[7]  Max A. Viergever,et al.  Nonlinear Multiscale Representations for Image Segmentation , 1997, Comput. Vis. Image Underst..

[8]  Marko Subasic,et al.  Level Set Methods and Fast Marching Methods , 2003 .

[9]  Wiro J. Niessen,et al.  Multiscale Vessel Enhancing Diffusion in CT Angiography Noise Filtering , 2005, IPMI.

[10]  Jon Sporring,et al.  The entropy of scale-space , 1996, ICPR.

[11]  Nicholas Ayache,et al.  Computer Vision, Virtual Reality and Robotics in Medicine , 1995, Lecture Notes in Computer Science.

[12]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[13]  J. Sponring The entropy of scale-space , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[14]  Joachim Weickert,et al.  A Review of Nonlinear Diffusion Filtering , 1997, Scale-Space.

[15]  Nicholas Ayache,et al.  Model-Based Detection of Tubular Structures in 3D Images , 2000, Comput. Vis. Image Underst..

[16]  Wiro J. Niessen,et al.  Level set based cerebral vasculature segmentation and diameter quantification in CT angiography , 2006, Medical Image Anal..

[17]  Alejandro F. Frangi,et al.  Muliscale Vessel Enhancement Filtering , 1998, MICCAI.

[18]  Guido Gerig,et al.  Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images , 1998, Medical Image Anal..

[19]  Joachim Weickert,et al.  Theoretical Foundations of Anisotropic Diffusion in Image Processing , 1994, Theoretical Foundations of Computer Vision.

[20]  Joachim Weickert,et al.  Coherence-Enhancing Diffusion Filtering , 1999, International Journal of Computer Vision.

[21]  S. Osher,et al.  Algorithms Based on Hamilton-Jacobi Formulations , 1988 .

[22]  Petia Radeva,et al.  Vesselness enhancement diffusion , 2003, Pattern Recognit. Lett..

[23]  Jürgen Weese,et al.  Multi-scale line segmentation with automatic estimation of width, contrast and tangential direction in 2D and 3D medical images , 1997, CVRMed.

[24]  D. Holdsworth,et al.  A three-dimensional cerebrovascular flow phantom. , 1999, Medical physics.

[25]  H. Venema,et al.  CT angiography of the circle of Willis and intracranial internal carotid arteries: maximum intensity projection with matched mask bone elimination-feasibility study. , 2001, Radiology.

[26]  Bart M. ter Haar Romeny,et al.  Geometry-Driven Diffusion in Computer Vision , 1994, Computational Imaging and Vision.

[27]  P. Lions,et al.  Image selective smoothing and edge detection by nonlinear diffusion. II , 1992 .

[28]  D. Altman,et al.  STATISTICAL METHODS FOR ASSESSING AGREEMENT BETWEEN TWO METHODS OF CLINICAL MEASUREMENT , 1986, The Lancet.

[29]  James S. Duncan,et al.  Medical Image Analysis , 1999, IEEE Pulse.

[30]  Joachim Weickert,et al.  Anisotropic diffusion in image processing , 1996 .

[31]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .