On Ontologies as Prior Conceptual Knowledge in Inductive Logic Programming

In this paper we consider the problem of having ontologies as prior conceptual knowledge in Inductive Logic Programming (ILP). In particular, we take a critical look at three ILP proposals based on knowledge representation frameworks that integrate Description Logics and Horn Clausal Logic. From the comparative analysis of the three, we draw general conclusions that can be considered as guidelines for an upcoming Onto-Relational Learning aimed at extending Relational Learning to account for ontologies.

[1]  Donato Malerba,et al.  Ideal Refinement of Descriptions in AL-Log , 2003, ILP.

[2]  Jeffrey M. Bradshaw,et al.  Applying KAoS Services to Ensure Policy Compliance for Semantic Web Services Workflow Composition and Enactment , 2004, SEMWEB.

[3]  De Raedt,et al.  Advances in Inductive Logic Programming , 1996 .

[4]  Donato Malerba,et al.  Bridging the Gap between Horn Clausal Logic and Description Logics in Inductive Learning , 2003, AI*IA.

[5]  Francesco M. Donini,et al.  AL-log: Integrating Datalog and Description Logics , 1998, Journal of Intelligent Information Systems.

[6]  Riccardo Rosati,et al.  DL+log: Tight Integration of Description Logics and Disjunctive Datalog , 2006, KR.

[7]  Céline Rouveirol,et al.  Towards Learning in CARIN-ALN , 2000, ILP.

[8]  J. Lloyd Foundations of Logic Programming , 1984, Symbolic Computation.

[9]  Ehud Shapiro,et al.  Inductive Inference of Theories from Facts , 1991, Computational Logic - Essays in Honor of Alan Robinson.

[10]  Diego Calvanese,et al.  The Description Logic Handbook: Theory, Implementation, and Applications , 2003, Description Logic Handbook.

[11]  Tom M. Mitchell,et al.  Generalization as Search , 2002 .

[12]  Richard B. Scherl,et al.  A Bibliography on Hybrid Reasoning , 1991, AI Mag..

[13]  Luc De Raedt,et al.  Clausal Discovery , 1997, Machine Learning.

[14]  Shan-Hwei Nienhuys-Cheng,et al.  Foundations of Inductive Logic Programming , 1997, Lecture Notes in Computer Science.

[15]  Franco Turini,et al.  AI*IA 2003: Advances in Artificial Intelligence , 2003, Lecture Notes in Computer Science.

[16]  Boris Motik,et al.  Query Answering for OWL-DL with Rules , 2004, International Semantic Web Conference.

[17]  John R. Josephson,et al.  What Are They? Why Do We Need Them? , 1999 .

[18]  Letizia Tanca,et al.  Logic Programming and Databases , 1990, Surveys in Computer Science.

[19]  Ian Horrocks,et al.  Conjunctive Query Answering for the Description Logic SHIQ , 2007, IJCAI.

[20]  Anthony G. Cohn,et al.  Thoughts and Afterthoughts on the 1988 Workshop on Principles of Hybrid Reasoning , 1991, AI Mag..

[21]  Alan M. Frisch Sorted Downward Refinement: Building Background Knowledge into a Refinement Operator for Inductive Programming , 1999, ILP.

[22]  Balakrishnan Chandrasekaran,et al.  What are ontologies, and why do we need them? , 1999, IEEE Intell. Syst..

[23]  Mariano Fernández-López,et al.  Ontological Engineering , 2003, Encyclopedia of Database Systems.

[24]  Gert Smolka,et al.  Attributive Concept Descriptions with Complements , 1991, Artif. Intell..

[25]  J. W. Lloyd,et al.  Foundations of logic programming; (2nd extended ed.) , 1987 .

[26]  Francesca A. Lisi,et al.  Learning SHIQ+log Rules for Ontology Evolution , 2008, SWAP.

[27]  Raymond Reiter,et al.  Equality and Domain Closure in First-Order Databases , 1980, JACM.

[28]  Michael Gelfond,et al.  Classical negation in logic programs and disjunctive databases , 1991, New Generation Computing.

[29]  Georg Gottlob,et al.  Disjunctive datalog , 1997, TODS.

[30]  Alon Y. Halevy,et al.  Combining Horn Rules and Description Logics in CARIN , 1998, Artif. Intell..

[31]  Francesca A. Lisi,et al.  Efficient Evaluation of Candidate Hypotheses in AL-log , 2004, ILP.

[32]  François Fages,et al.  Principles and Practice of Semantic Web Reasoning, Third International Workshop, PPSWR 2005, Dagstuhl Castle, Germany, September 11-16, 2005, Proceedings , 2005, PPSWR.

[33]  Tom M. Mitchell,et al.  Acquisition of Appropriate Bias for Inductive Concept Learning , 1982, AAAI.

[34]  Jörg-Uwe Kietz,et al.  Learnability of Description Logic Programs , 2002, ILP.

[35]  Ryszard S. Michalski,et al.  A Theory and Methodology of Inductive Learning , 1983, Artificial Intelligence.

[36]  Luc De Raedt,et al.  Logical Settings for Concept-Learning , 1997, Artif. Intell..

[37]  James A. Hendler,et al.  The Semantic Web" in Scientific American , 2001 .

[38]  Francesca A. Lisi,et al.  Foundations of Onto-Relational Learning , 2008, ILP.

[39]  Riccardo Rosati,et al.  On the decidability and complexity of integrating ontologies and rules , 2005, J. Web Semant..

[40]  Francesca A. Lisi,et al.  Under Consideration for Publication in Theory and Practice of Logic Programming Building Rules on Top of Ontologies for the Semantic Web with Inductive Logic Programming , 2007 .

[41]  John R. Anderson,et al.  MACHINE LEARNING An Artificial Intelligence Approach , 2009 .

[42]  Gordon Plotkin,et al.  A Note on Inductive Generalization , 2008 .

[43]  Ian Horrocks,et al.  Practical Reasoning for Very Expressive Description Logics , 2000, Log. J. IGPL.

[44]  砂田 憲吾,et al.  Bridging the gap between , 2009 .

[45]  Ian Horrocks,et al.  From SHIQ and RDF to OWL: the making of a Web Ontology Language , 2003, J. Web Semant..

[46]  Donato Malerba,et al.  Inducing Multi-Level Association Rules from Multiple Relations , 2004, Machine Learning.

[47]  Alexander Borgida,et al.  On the Relative Expressiveness of Description Logics and Predicate Logics , 1996, Artif. Intell..

[48]  Thomas R. Gruber,et al.  A translation approach to portable ontology specifications , 1993, Knowl. Acquis..

[49]  Diego Calvanese,et al.  DL-Lite: Practical Reasoning for Rich Dls , 2004, Description Logics.

[50]  Gordon Plotkin,et al.  A Further Note on Inductive Generalization , 2008 .

[51]  Wray L. Buntine Generalized Subsumption and Its Applications to Induction and Redundancy , 1986, Artif. Intell..

[52]  Riccardo Rosati,et al.  Semantic and Computational Advantages of the Safe Integration of Ontologies and Rules , 2005, PPSWR.

[53]  Alan M. Frisch The Substitutional Framework for Sorted Deduction: Fundamental Results on Hybrid Reasoning , 1991, Artif. Intell..