Instead of developing a novel red phosphor individually, this work proposes the production of white light by combining a near-ultraviolet/ultraviolet diode chip with blue and special yellow phosphors: the yellow phosphor includes the red and green components with high color saturation. The availability of this scheme is demonstrated by preparing a white light-emitting diode (WLED) with color rendering index (Ra) up to 90.3. The desired single-mass yellow phosphor is successfully screened out from the YVO(4):Bi(3+),Eu(3+) system by using a combinatorial chemistry approach. When the emission color and luminous efficiency are both considered, the best composition for producing white light is (Y(1-s-t)Bi(s)Eu(t))VO(4) with 0.040 < or = s < or = 0.050 and 0 < t < or = 0.015. The red component that is required for a high-Ra WLED is obtained through sensitizing luminescence of Eu(3+) by Bi(3+) in a YVO(4) host; meanwhile, both Bi(3+) and Eu(3+) emission are improved by keeping the Bi(3+) and Eu(3+) contents close to the critical concentration.