Trinary arithmetic and logic unit (TALU) using savart plate and spatial light modulator (SLM) suitable for optical computation in multivalued logic

Abstract Arithmetic logic unit (ALU) is the most important unit in any computing system. Optical computing is becoming popular day-by-day because of its ultrahigh processing speed and huge data handling capability. Obviously for the fast processing we need the optical TALU compatible with the multivalued logic. In this regard we are communicating the trinary arithmetic and logic unit (TALU) in modified trinary number (MTN) system, which is suitable for the optical computation and other applications in multivalued logic system. Here the savart plate and spatial light modulator (SLM) based optoelectronic circuits have been used to exploit the optical tree architecture (OTA) in optical interconnection network.

[1]  S Mukhopadhyay,et al.  Binary optical data subtraction by using a ternary dibit representation technique in optical arithmetic problems. , 1992, Applied optics.

[2]  Sourangshu Mukhopadhyay,et al.  A tristate optical logic system , 1991 .

[3]  Abdul Ahad Sami Awwal,et al.  Optical implementation of an efficient modified signed-digit trinary addition , 1998 .

[4]  A. K. Datta,et al.  Arithmetic operations in optical computations using a modified trinary number system. , 1989, Optics letters.

[5]  Algirdas Avizienis,et al.  Signed-Digit Numbe Representations for Fast Parallel Arithmetic , 1961, IRE Trans. Electron. Comput..

[6]  Amal K. Ghosh,et al.  Trinary registers and counters using savart plate and spatial light modulator for optical computation in multivalued logic , 2009 .

[7]  David W. Lloyd,et al.  A novel asynchronous ALU for massively parallel architectures , 1996, Proceedings of 4th Euromicro Workshop on Parallel and Distributed Processing.

[8]  Amal K. Ghosh Parity generator and parity checker in the modified trinary number system using savart plate and spatial light modulator , 2010 .

[9]  Mohammad A. Karim,et al.  Optical higher-order quaternary signed-digit arithmetic , 1994 .

[10]  S Mukhopadhyay,et al.  New coding scheme for addition and subtraction using the modified signed-digit number representation in optical computation. , 1988, Applied optics.

[11]  Abdallah K. Cherri,et al.  Efficient optical negabinary modified signed-digit arithmetic: one-step addition and subtraction algorithms , 2004 .

[12]  Tanay Chattopadhyay,et al.  Design of SOA-MZI based all-optical programmable logic device (PLD) , 2010 .

[13]  Amal K. Ghosh,et al.  Trinary flip-flops using Savart plate and spatial light modulator for optical computation in multivalued logic , 2008 .

[14]  Amal K. Ghosh,et al.  Binary to modified trinary number system conversion and vice-versa for optical super computing , 2010, Natural Computing.

[15]  Annalisa Massini,et al.  High efficiency redundant binary number representations for parallel arithmetic on optical computers , 1994 .

[16]  Kenneth C. Smith The Prospects for Multivalued Logic: A Technology and Applications View , 1981, IEEE Transactions on Computers.

[17]  Amal K. Ghosh,et al.  Trinary optical logic processors using shadow casting with polarized light , 1990 .

[18]  Mohammad S. Alam,et al.  Nonrecoded trinary signed-digit multiplication based on digit grouping and pixel assignment , 2004 .

[19]  Tanay Chattopadhyay,et al.  DESIGNING OF ALL-OPTICAL TRI-STATE LOGIC SYSTEM WITH THE HELP OF OPTICAL NONLINEAR MATERIAL , 2008 .

[20]  D Casasent,et al.  Symbolic substitution modified signed-digit optical adder. , 1994, Applied optics.

[21]  J. U. Ahmed,et al.  General purpose computing using polarization-encoded optical shadow casting , 1992, Proceedings of the IEEE 1992 National Aerospace and Electronics Conference@m_NAECON 1992.

[22]  Mohammad A. Karim,et al.  Optical Computing: An Introduction , 1992 .

[23]  H. John Caulfield Perspectives in Optical Computing , 1998, Computer.

[24]  Mohammad S. Alam,et al.  Efficient implementation of arithmetic units based on polarization-encoded optical shadow casting , 1997 .

[25]  Feng Qian,et al.  Optoelectronic quotient-selected modified signed-digit division , 2001 .