On a doubly nonlinear diffusion model of chemotaxis with prevention of overcrowding
暂无分享,去创建一个
[1] G. Minty. Monotone (nonlinear) operators in Hilbert space , 1962 .
[2] Long Chen. FINITE VOLUME METHODS , 2011 .
[3] Vincenzo Vespri,et al. Holder Estimates for Local Solutions of Some Doubly Nonlinear Degenerate Parabolic Equations , 1993 .
[4] E DiBenedetto. On the Local Behaviour of Solutions of Degenerate Parabolic Equations with Measurable Coefficients. , 1984 .
[5] Lucio Boccardo,et al. Existence of bounded solutions for non linear elliptic unilateral problems , 1988 .
[6] P. Biler,et al. Two‐dimensional chemotaxis models with fractional diffusion , 2009 .
[7] Pavel Drábek,et al. The $p$-Laplacian – mascot of nonlinear analysis , 2007 .
[8] Herbert Amann,et al. Nonhomogeneous Linear and Quasilinear Elliptic and Parabolic Boundary Value Problems , 1993 .
[9] Mohammed Kbiri Alaoui,et al. On Degenerate Parabolic Equations , 2011, Int. J. Math. Math. Sci..
[10] Mostafa Bendahmane,et al. ON A TWO-SIDEDLY DEGENERATE CHEMOTAXIS MODEL WITH VOLUME-FILLING EFFECT , 2007 .
[11] Annali DI Matematica,et al. Annali di Matematica pura ed applicata , 1892 .
[12] Philippe Laurençot,et al. A Chemotaxis Model with Threshold Density and Degenerate Diffusion , 2005 .
[13] J. Simon. Compact sets in the spaceLp(O,T; B) , 1986 .
[14] R M Nisbet,et al. The regulation of inhomogeneous populations. , 1975, Journal of theoretical biology.
[15] J. M. Urbano. The Method of Intrinsic Scaling , 2008 .
[16] L. Segel,et al. Model for chemotaxis. , 1971, Journal of theoretical biology.
[17] O. A. Ladyzhenskai︠a︡,et al. Linear and Quasi-linear Equations of Parabolic Type , 1995 .
[18] Vincenzo Vespri,et al. Current issues on singular and degenerate evolution equations , 2002 .
[19] Atsushi Yagi,et al. NORM BEHAVIOR OF SOLUTIONS TO A PARABOLIC SYSTEM OF CHEMOTAXIS , 1997 .
[20] J. M. Urbano. The Method of Intrinsic Scaling: A Systematic Approach to Regularity for Degenerate and Singular PDEs , 2008 .
[21] Morton E. Gurtin,et al. On the diffusion of biological populations , 1977 .
[22] Dirk Horstmann,et al. F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences , 2022 .
[23] Martin Burger,et al. The Keller-Segel Model for Chemotaxis with Prevention of Overcrowding: Linear vs. Nonlinear Diffusion , 2006, SIAM J. Math. Anal..
[24] Jacques Simeon,et al. Compact Sets in the Space L~(O, , 2005 .
[25] F. Dkhil. Singular limit of a degenerate chemotaxis-Fisher equation , 2004 .
[26] N. Risebro,et al. On the uniqueness and stability of entropy solutions of nonlinear degenerate parabolic equations with rough coefficients , 2003 .
[27] Thomas P. Witelski. Segregation and mixing in degenerate diffusion in population dynamics , 1997 .
[28] M. A. Herrero,et al. Chemotactic collapse for the Keller-Segel model , 1996, Journal of mathematical biology.