On a doubly nonlinear diffusion model of chemotaxis with prevention of overcrowding

This paper addresses the existence and regularity of weak solutions for a fully parabolic model of chemotaxis, with prevention of overcrowding, that degenerates in a two-sided fashion, including an extra nonlinearity represented by a p-Laplacian diffusion term. To prove the existence of weak solutions, a Schauder fixed-point argument is applied to a regularized problem and the compactness method is used to pass to the limit. The local Holder regularity of weak solutions is established using the method of intrinsic scaling. The results are a contribution to showing, qualitatively, to what extent the properties of the classical Keller–Segel chemotaxis models are preserved in a more general setting. Some numerical examples illustrate the model.

[1]  G. Minty Monotone (nonlinear) operators in Hilbert space , 1962 .

[2]  Long Chen FINITE VOLUME METHODS , 2011 .

[3]  Vincenzo Vespri,et al.  Holder Estimates for Local Solutions of Some Doubly Nonlinear Degenerate Parabolic Equations , 1993 .

[4]  E DiBenedetto On the Local Behaviour of Solutions of Degenerate Parabolic Equations with Measurable Coefficients. , 1984 .

[5]  Lucio Boccardo,et al.  Existence of bounded solutions for non linear elliptic unilateral problems , 1988 .

[6]  P. Biler,et al.  Two‐dimensional chemotaxis models with fractional diffusion , 2009 .

[7]  Pavel Drábek,et al.  The $p$-Laplacian – mascot of nonlinear analysis , 2007 .

[8]  Herbert Amann,et al.  Nonhomogeneous Linear and Quasilinear Elliptic and Parabolic Boundary Value Problems , 1993 .

[9]  Mohammed Kbiri Alaoui,et al.  On Degenerate Parabolic Equations , 2011, Int. J. Math. Math. Sci..

[10]  Mostafa Bendahmane,et al.  ON A TWO-SIDEDLY DEGENERATE CHEMOTAXIS MODEL WITH VOLUME-FILLING EFFECT , 2007 .

[11]  Annali DI Matematica,et al.  Annali di Matematica pura ed applicata , 1892 .

[12]  Philippe Laurençot,et al.  A Chemotaxis Model with Threshold Density and Degenerate Diffusion , 2005 .

[13]  J. Simon Compact sets in the spaceLp(O,T; B) , 1986 .

[14]  R M Nisbet,et al.  The regulation of inhomogeneous populations. , 1975, Journal of theoretical biology.

[15]  J. M. Urbano The Method of Intrinsic Scaling , 2008 .

[16]  L. Segel,et al.  Model for chemotaxis. , 1971, Journal of theoretical biology.

[17]  O. A. Ladyzhenskai︠a︡,et al.  Linear and Quasi-linear Equations of Parabolic Type , 1995 .

[18]  Vincenzo Vespri,et al.  Current issues on singular and degenerate evolution equations , 2002 .

[19]  Atsushi Yagi,et al.  NORM BEHAVIOR OF SOLUTIONS TO A PARABOLIC SYSTEM OF CHEMOTAXIS , 1997 .

[20]  J. M. Urbano The Method of Intrinsic Scaling: A Systematic Approach to Regularity for Degenerate and Singular PDEs , 2008 .

[21]  Morton E. Gurtin,et al.  On the diffusion of biological populations , 1977 .

[22]  Dirk Horstmann,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences , 2022 .

[23]  Martin Burger,et al.  The Keller-Segel Model for Chemotaxis with Prevention of Overcrowding: Linear vs. Nonlinear Diffusion , 2006, SIAM J. Math. Anal..

[24]  Jacques Simeon,et al.  Compact Sets in the Space L~(O, , 2005 .

[25]  F. Dkhil Singular limit of a degenerate chemotaxis-Fisher equation , 2004 .

[26]  N. Risebro,et al.  On the uniqueness and stability of entropy solutions of nonlinear degenerate parabolic equations with rough coefficients , 2003 .

[27]  Thomas P. Witelski Segregation and mixing in degenerate diffusion in population dynamics , 1997 .

[28]  M. A. Herrero,et al.  Chemotactic collapse for the Keller-Segel model , 1996, Journal of mathematical biology.