Thermal Properties of Metal-Coated Vertically-Aligned Single Wall Nanotube Films

Owing to their extraordinarily high thermal conductivities, carbon nanotubes (CNTs) are promising for use in advanced thermal interface materials (TIMs). While there has been much previous research on carbon nanotube thermal properties, there are little data for aligned films of single wall nanotubes. This paper measures the thermal interface resistances of metal-coated vertically-aligned single wall CNT (SWNT) arrays using a nanosecond pump/probe thermoreflectance technique. The data capture the vertical variation of CNT thermal properties including their interface resistances. The data show the total thermal resistance of the TIM is R"swnt,tot=1.2 times 10-5 m2 KW-1, and that the CNT-metal interface resistance strongly reduces the effective vertical thermal conductivity. An approximate model shows that the evaporated metal film contacts only a small fraction of the CNTs. Based on the conclusions of the model, the individual CNT-metal contact conductance is hcnt-metal,a=6.6 times 107 Wm-2K-1 which is quite good. Increasing the number of CNT-substrate contacts is a very promising approach for improving the thermal performance of CNT-based interface materials

[1]  Jun Xu,et al.  Thermal Contact Conductance Enhancement With Carbon Nanotube Arrays , 2004 .

[2]  Kenneth E. Goodson,et al.  Thermal conduction in metallized silicon‐dioxide layers on silicon , 1994 .

[3]  E. Grulke,et al.  Anomalous thermal conductivity enhancement in nanotube suspensions , 2001 .

[4]  Quantized phonon spectrum of single-wall carbon nanotubes , 2000, Science.

[5]  Patrick E. Phelan,et al.  Application of Diffuse Mismatch Theory to the Prediction of Thermal Boundary Resistance in Thin-Film High-Tc Superconductors , 1996, Microelectromechanical Systems (MEMS).

[6]  Huaqing Xie,et al.  Measuring the thermal conductivity of a single carbon nanotube. , 2005, Physical review letters.

[7]  E. Pop,et al.  Thermal conductance of an individual single-wall carbon nanotube above room temperature. , 2005, Nano letters.

[8]  Kwon,et al.  Unusually high thermal conductivity of carbon nanotubes , 2000, Physical review letters.

[9]  Xianfan Xu,et al.  Radiation transfer through nanoscale apertures , 2005 .

[10]  G. Eesley,et al.  Transient thermoreflectance from thin metal films , 1986, Annual Meeting Optical Society of America.

[11]  A. Majumdar,et al.  Dense Vertically Aligned Multiwalled Carbon Nanotube Arrays as Thermal Interface Materials , 2007, IEEE Transactions on Components and Packaging Technologies.

[12]  A. Smith,et al.  THERMAL BOUNDARY RESISTANCE MEASUREMENTS USING A TRANSIENT THERMOREFLECTANCE TECHNIQUE , 2000 .

[13]  Jennifer R. Lukes,et al.  Interfacial thermal resistance between carbon nanotubes: Molecular dynamics simulations and analytical thermal modeling , 2006 .

[14]  Norris,et al.  Time-resolved observation of electron-phonon relaxation in copper. , 1987, Physical Review Letters.

[15]  M. Radosavljevic,et al.  Carbon nanotube composites for thermal management , 2002, cond-mat/0205418.

[16]  Pawel Keblinski,et al.  Role of thermal boundary resistance on the heat flow in carbon-nanotube composites , 2004 .

[17]  Z. Pan,et al.  Linear specific heat of carbon nanotubes , 1999 .

[18]  H. Bethe Theory of Diffraction by Small Holes , 1944 .

[19]  R. Pohl,et al.  Thermal Boundary Resistance from 0.5–300K , 1986 .

[20]  Mohamed A. Osman,et al.  Temperature dependence of the thermal conductivity of single-wall carbon nanotubes , 2001 .

[21]  Eric Pop,et al.  Negative differential conductance and hot phonons in suspended nanotube molecular wires. , 2005, Physical review letters.

[22]  Jennifer R. Lukes,et al.  Thermal Conductivity of Individual Single-Wall Carbon Nanotubes , 2007 .

[23]  R. Smalley,et al.  Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films , 2000 .

[24]  N. Mingo,et al.  Carbon nanotube ballistic thermal conductance and its limits. , 2005, Physical review letters.

[25]  Fujimoto,et al.  Femtosecond studies of nonequilibrium electronic processes in metals. , 1987, Physical review letters.

[26]  H. Maris,et al.  Kapitza conductance and heat flow between solids at temperatures from 50 to 300 K. , 1993, Physical review. B, Condensed matter.

[27]  N. Mingo,et al.  Length dependence of carbon nanotube thermal conductivity and the "problem of long waves". , 2005, Nano letters.

[28]  P. McEuen,et al.  Thermal transport measurements of individual multiwalled nanotubes. , 2001, Physical Review Letters.

[29]  Zhiyuan Zhu,et al.  Thermal conductivity of functionalized single-wall carbon nanotubes , 2007 .

[30]  Clemens,et al.  Time-resolved thermal transport in compositionally modulated metal films. , 1988, Physical review. B, Condensed matter.

[31]  H. Dai,et al.  Ultra-high-yield growth of vertical single-walled carbon nanotubes: Hidden roles of hydrogen and oxygen. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Clifford W. Padgett,et al.  Influence of Chemisorption on the Thermal Conductivity of Single-Wall Carbon Nanotubes , 2004 .

[33]  Jun Xu,et al.  Thermal characterization of vertically-oriented carbon nanotubes on silicon , 2005, Semiconductor Thermal Measurement and Management IEEE Twenty First Annual IEEE Symposium, 2005..

[34]  Thermal Conductivity of Single-Walled Carbon Nanotube/PMMA Nanocomposites , 2007 .

[35]  K. Goodson,et al.  3-Omega Measurements of Vertically Oriented Carbon Nanotubes on Silicon , 2006 .

[36]  S. Maruyama A MOLECULAR DYNAMICS SIMULATION OF HEAT CONDUCTION OF A FINITE LENGTH SINGLE-WALLED CARBON NANOTUBE , 2003 .

[37]  K. Goodson,et al.  Thermal conductance enhancement of particle-filled thermal interface materials using carbon nanotube inclusions , 2004, The Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena In Electronic Systems (IEEE Cat. No.04CH37543).

[38]  Q. Xue,et al.  Model for the effective thermal conductivity of carbon nanotube composites , 2006, Nanotechnology.

[39]  K. Goodson,et al.  Infrared Microscopy Thermal Characterization of Opposing Carbon Nanotube Arrays , 2007 .

[40]  Scott T. Huxtable,et al.  Interfacial heat flow in carbon nanotube suspensions , 2003, Nature materials.

[41]  R. Pease,et al.  Thermal conductivity measurements of thin-film resist , 2001 .

[42]  A. Majumdar,et al.  Vertically Aligned Multi-Walled Carbon Nanotube Arrays as Thermal Interface Materials and Measurement Technique , 2005 .

[43]  Jingqi Li,et al.  Thermal conductivity of multiwalled carbon nanotubes , 2002 .

[44]  Kikuo Ujihara,et al.  Reflectivity of metals at high temperatures , 1972 .