Title: Early prediction of high risk gestational diabetes mellitus via machine learning models.

far,

[1]  C. Boesch,et al.  Accumulation of saturated intramyocellular lipid is associated with insulin resistance[S] , 2019, Journal of Lipid Research.

[2]  Gary S. Collins,et al.  Reporting of artificial intelligence prediction models , 2019, The Lancet.

[3]  G. Ding,et al.  Insulin Therapy for Gestational Diabetes Mellitus Does Not Fully Protect Offspring From Diet-Induced Metabolic Disorders , 2019, Diabetes.

[4]  James M. Whalen,et al.  Body Mass Index Versus Body Fat Percentage in Prospective National Football League Athletes: Overestimation of Obesity Rate in Athletes at the National Football League Scouting Combine , 2018, Journal of strength and conditioning research.

[5]  Ivone U S Leong Diabetes: ANGPTL8 as an early predictor of gestational diabetes mellitus , 2018, Nature Reviews Endocrinology.

[6]  V. Wong,et al.  Twin Pregnancy With Gestational Diabetes Mellitus: A Double Whammy? , 2017, Diabetes Care.

[7]  2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2018 , 2017, Diabetes Care.

[8]  G. Guyatt,et al.  Discrimination and Calibration of Clinical Prediction Models: Users’ Guides to the Medical Literature , 2017, JAMA.

[9]  P. Williams,et al.  First trimester prediction of gestational diabetes mellitus: A clinical model based on maternal demographic parameters. , 2017, Diabetes research and clinical practice.

[10]  A. Brunetti,et al.  Gestational diabetes mellitus: an updated overview , 2017, Journal of Endocrinological Investigation.

[11]  R. Ozaki,et al.  In Utero Exposure to Maternal Hyperglycemia Increases Childhood Cardiometabolic Risk in Offspring , 2017, Diabetes Care.

[12]  Xingbo Zhao,et al.  Plasma fatty acid-binding protein 4 (FABP4) as a novel biomarker to predict gestational diabetes mellitus , 2016, Acta Diabetologica.

[13]  Simin Liu,et al.  Adipokine levels during the first or early second trimester of pregnancy and subsequent risk of gestational diabetes mellitus: A systematic review. , 2015, Metabolism: clinical and experimental.

[14]  C. Smith,et al.  Maternal lipid levels during pregnancy and gestational diabetes: a systematic review and meta‐analysis , 2015, BJOG : an international journal of obstetrics and gynaecology.

[15]  Benjamin R Saville,et al.  Decision curve analysis. , 2015, JAMA.

[16]  Dong Yu,et al.  Deep Learning: Methods and Applications , 2014, Found. Trends Signal Process..

[17]  D. Coustan,et al.  Gestational diabetes mellitus. , 2013, Clinical chemistry.

[18]  Nan Li,et al.  Evaluation of the Value of Fasting Plasma Glucose in the First Prenatal Visit to Diagnose Gestational Diabetes Mellitus in China , 2013, Diabetes Care.

[19]  P. Leung,et al.  Transgenerational Glucose Intolerance With Igf2/H19 Epigenetic Alterations in Mouse Islet Induced by Intrauterine Hyperglycemia , 2012, Diabetes.

[20]  H. Teede,et al.  Gestational diabetes: Development of an early risk prediction tool to facilitate opportunities for prevention , 2011, The Australian & New Zealand journal of obstetrics & gynaecology.

[21]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[22]  Surabhi Nanda,et al.  Prediction of gestational diabetes mellitus by maternal factors and biomarkers at 11 to 13 weeks , 2011, Prenatal diagnosis.

[23]  A. Dyer,et al.  International Association of Diabetes and Pregnancy Study Groups Recommendations on the Diagnosis and Classification of Hyperglycemia in Pregnancy , 2010, Diabetes Care.

[24]  G. Visser,et al.  Estimating the risk of gestational diabetes mellitus: a clinical prediction model based on patient characteristics and medical history , 2010, BJOG : an international journal of obstetrics and gynaecology.

[25]  K. Vehik,et al.  Association of Intrauterine Exposure to Maternal Diabetes and Obesity With Type 2 Diabetes in Youth , 2008, Diabetes Care.

[26]  Yi Shi,et al.  A Model-Free Greedy Gene Selection for Microarray Sample Class Prediction , 2006, 2006 IEEE Symposium on Computational Intelligence and Bioinformatics and Computational Biology.

[27]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[28]  E. Çalışkan,et al.  A population‐based risk factor scoring will decrease unnecessary testing for the diagnosis of gestational diabetes mellitus , 2004, Acta obstetricia et gynecologica Scandinavica.

[29]  S. Dudoit,et al.  Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data , 2002 .

[30]  M. Xiong,et al.  Biomarker Identification by Feature Wrappers , 2022 .

[31]  Y. Terauchi,et al.  The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity , 2001, Nature Medicine.

[32]  M. Lazar,et al.  The hormone resistin links obesity to diabetes , 2001, Nature.

[33]  R. Hanson,et al.  Intrauterine exposure to diabetes conveys risks for type 2 diabetes and obesity: a study of discordant sibships. , 2000, Diabetes.

[34]  C. Naylor,et al.  SELECTIVE SCREENING FOR GESTATIONAL DIABETES MELLITUS , 1997 .

[35]  A. Cerami,et al.  Correlation of glucose regulation and hemoglobin AIc in diabetes mellitus. , 1976, The New England journal of medicine.

[36]  O. Blumenfeld,et al.  Studies of an unusual hemoglobin in patients with diabetes mellitus. , 1969, Biochemical and biophysical research communications.

[37]  Aixia Guo,et al.  Gene Selection for Cancer Classification using Support Vector Machines , 2014 .

[38]  G. Apolone,et al.  One model, several results: the paradox of the Hosmer-Lemeshow goodness-of-fit test for the logistic regression model. , 2000, Journal of epidemiology and biostatistics.

[39]  C. Naylor,et al.  Selective screening for gestational diabetes mellitus. Toronto Trihospital Gestational Diabetes Project Investigators. , 1997, The New England journal of medicine.

[40]  M. Zachary,et al.  Department of , 1993 .

[41]  R. Jackson,et al.  Diabetes in pregnancy. , 1965, The Journal of the Indiana State Medical Association.