Improved passivation ability via tuning dislocation cell substructures for FeCoCrNiMn high-entropy alloy fabricated by laser powder bed fusion

[1]  D. Shu,et al.  Heat treatment effects on the metastable microstructure, mechanical property and corrosion behavior of Al-added CoCrFeMnNi alloys fabricated by laser powder bed fusion , 2022, Journal of Materials Science & Technology.

[2]  V. Popov,et al.  Synthesis of Refractory High-Entropy Alloy WTaMoNbV by Powder Bed Fusion Process Using Mixed Elemental Alloying Powder , 2022, Materials.

[3]  Chao-Sung Lin,et al.  Microstructure and corrosion behavior of FeCrNiCoMnx (x = 1.0, 0.6, 0.3, 0) high entropy alloys in 0.5 M H2SO4 , 2021 .

[4]  N. Birbilis,et al.  Element-resolved electrochemical analysis of the passivity of additively manufactured stainless steel 316L , 2021 .

[5]  C. Liu,et al.  Segregation enabled outstanding combination of mechanical and corrosion properties in a FeCrNi medium entropy alloy manufactured by selective laser melting , 2021 .

[6]  S. Ni,et al.  Effects of elemental segregation and scanning strategy on the mechanical properties and hot cracking of a selective laser melted FeCoCrNiMn-(N,Si) high entropy alloy , 2021 .

[7]  M. Zhang,et al.  Influence of lanthanum on passivity behavior of CrMnFeNi high entropy alloys , 2021 .

[8]  P. Marcus,et al.  Insight on passivity of high entropy alloys: Thermal stability and ion transport mechanisms in the passive oxide film on CoCrFeMnNi surfaces , 2021 .

[9]  Yanyun Zhao,et al.  Enhanced thermal stability of the cellular structure through nano-scale oxide precipitation in 3D printed 316L stainless steel , 2021 .

[10]  V. Popov,et al.  Complex Concentrated Alloys for Substitution of Critical Raw Materials in Applications for Extreme Conditions , 2021, Materials.

[11]  Xiaojing Wang,et al.  Corrosion Behavior of a Nickel-Free High-Nitrogen Stainless Steel with Hydrogen Charging , 2021, JOM.

[12]  Chun-liang Chen,et al.  Study of (Ni,Cr) pre-milling for synthesis of CoFe(NiCr)Mn high entropy alloy by mechanical alloying , 2021 .

[13]  D. Kong,et al.  About metastable cellular structure in additively manufactured austenitic stainless steels , 2021 .

[14]  Y. F. Yuan,et al.  Effect of Potential on the Characteristics of Passive Film on a CoCrFeMnNi High-Entropy Alloy in Carbonate/Bicarbonate Solution , 2021, Journal of Materials Engineering and Performance.

[15]  B. Cantor Multicomponent high-entropy Cantor alloys , 2020, Progress in Materials Science.

[16]  Guosheng Huang,et al.  Evaluation of corrosion resistance of the single-phase light refractory high entropy alloy TiCrVNb0.5Al0.5 in chloride environment , 2020 .

[17]  Xiaojie Du,et al.  Corrosion resistance enhancement of CoCrFeMnNi high-entropy alloy fabricated by additive manufacturing , 2020 .

[18]  R. A. Antunes,et al.  Electronic properties of the passive films formed on CoCrFeNi and CoCrFeNiAl high entropy alloys in sodium chloride solution , 2020 .

[19]  J. Qiao,et al.  Comparison of electrochemical behaviour between La-free and La-containing CrMnFeNi HEA by Mott–Schottky analysis and EIS measurements , 2020, Corrosion Engineering, Science and Technology.

[20]  S. Babu,et al.  Effect of cyclic rapid thermal loadings on the microstructural evolution of a CrMnFeCoNi high-entropy alloy manufactured by selective laser melting , 2020 .

[21]  V. Popov,et al.  High entropy Al0.5CrMoNbTa0.5 alloy: Additive manufacturing vs. casting vs. CALPHAD approval calculations , 2020 .

[22]  Jianzhong Jiang,et al.  Improvement of corrosion resistance and magnetic properties of FeCoNiAl0.2Si0.2 high entropy alloy via rapid-solidification , 2020 .

[23]  Dawei Zhang,et al.  Effect of molybdenum content on the microstructure and corrosion behavior of FeCoCrNiMox high-entropy alloys , 2020 .

[24]  Yi‐Sheng Lu,et al.  Corrosion Behavior and Passive Film Characterization of Fe50Mn30Co10Cr10 Dual-Phase High-Entropy Alloy in Sulfuric Acid Solution , 2020 .

[25]  J. Yang,et al.  Effects of Mn on the electrochemical corrosion and passivation behavior of CoFeNiMnCr high-entropy alloy system in H2SO4 solution , 2020 .

[26]  D. Kong,et al.  The passivity of selective laser melted 316L stainless steel , 2020 .

[27]  Huijin Jin,et al.  Corrosion resistance mechanism of the passive films formed on as-cast FeCoCrNiMn high-entropy alloy , 2020, Materials Research Express.

[28]  Ye Pan,et al.  Corrosion behaviors of FeCoNiCr (x = 0, 0.5, 1.0) multi-principal element alloys: Role of Cr-induced segregation , 2020 .

[29]  P. Jablonski,et al.  The influence of incorporation of Mn on the pitting corrosion performance of CrFeCoNi High Entropy Alloy at different temperatures , 2019 .

[30]  Yingke Zhou,et al.  In-situ assembly from graphene encapsulated CoCrFeMnNi high-entropy alloy nanoparticles for improvement corrosion resistance and mechanical properties in metal matrix composites , 2019, Journal of Alloys and Compounds.

[31]  H. Wendrock,et al.  A comparison study of dislocation density, recrystallization and grain growth among nickel, FeNiCo ternary alloy and FeNiCoCrMn high entropy alloy , 2019, Journal of Alloys and Compounds.

[32]  Jian Chen,et al.  Effects of Boron Content on microstructure and mechanical properties of AlFeCoNiBx High Entropy Alloy Prepared by vacuum arc melting , 2019, Vacuum.

[33]  M. R. Toroghinejad,et al.  Microstructure and Mechanical Properties of a Multiphase FeCrCuMnNi High-Entropy Alloy , 2019, Journal of Materials Engineering and Performance.

[34]  Hao Liu,et al.  Microstructural characterization and corrosion behaviour of AlCoCrFeNiTix high-entropy alloy coatings fabricated by laser cladding , 2019, Surface and Coatings Technology.

[35]  Yong Liu,et al.  Effect of roughness on general corrosion and pitting of (FeCoCrNi)0.89(WC)0.11 high-entropy alloy composite in 3.5 wt.% NaCl solution , 2019, Corrosion Science.

[36]  Xiaozhou Liao,et al.  Hierarchical microstructure and strengthening mechanisms of a CoCrFeNiMn high entropy alloy additively manufactured by selective laser melting , 2018, Scripta Materialia.

[37]  R. B. Nair,et al.  Exceptionally high cavitation erosion and corrosion resistance of a high entropy alloy. , 2018, Ultrasonics sonochemistry.

[38]  T. Shun,et al.  Microstructures and properties of Al0.3CoCrFeNiMnx high-entropy alloys , 2017 .

[39]  Baolong Zheng,et al.  Recent Progress in High Entropy Alloy Research , 2017 .

[40]  Chong-xiang Huang,et al.  Corrosion performance of Al2CrFeCoxCuNiTi high-entropy alloy coatings in acid liquids , 2017 .

[41]  K. An,et al.  A precipitation-hardened high-entropy alloy with outstanding tensile properties , 2016 .

[42]  C. Carney,et al.  Oxidation of CoCrFeMnNi High Entropy Alloys , 2015 .

[43]  I. Todd,et al.  The use of high-entropy alloys in additive manufacturing , 2015 .

[44]  K. Dahmen,et al.  Microstructures and properties of high-entropy alloys , 2014 .

[45]  J. Yeh,et al.  Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys , 2013 .

[46]  Z. X. Liu,et al.  Corrosion behavior of CuCrFeNiMn high entropy alloy system in 1 M sulfuric acid solution , 2012 .

[47]  I. Toor Mott-Schottky Analysis of Passive Films on Si Containing Stainless Steel Alloys , 2011 .

[48]  R. Yousefi,et al.  X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods , 2011 .

[49]  N. Birbilis,et al.  Effect of Grain Size on Corrosion: A Review , 2010 .

[50]  K. Edström,et al.  XPS analysis of manganese in stainless steel passive films on 1.4432 and the lean duplex 1.4162 , 2010 .

[51]  H. Kwon,et al.  Effects of Mn on the localized corrosion behavior of Fe–18Cr alloys , 2010 .

[52]  Y. F. Cheng,et al.  Micro-electrochemical characterization and Mott–Schottky analysis of corrosion of welded X70 pipeline steel in carbonate/bicarbonate solution , 2009 .

[53]  D. Macdonald,et al.  The passivity of Type 316L stainless steel in borate buffer solution , 2008 .

[54]  A. Coy,et al.  Effect of Mo and Mn additions on the corrosion behaviour of AISI 304 and 316 stainless steels in H2SO4 , 2008 .

[55]  C. Liu,et al.  Characterization and corrosion resistance of organically modified silicate–NiZn ferrite/polyaniline hybrid coatings on aluminum alloys , 2007 .

[56]  Y. Hsu,et al.  Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution , 2005 .

[57]  M. Montemor,et al.  Capacitance behaviour of passive films on ferritic and austenitic stainless steel , 2005 .

[58]  B. Cantor,et al.  Microstructural development in equiatomic multicomponent alloys , 2004 .

[59]  D. Macdonald Passivity–the key to our metals-based civilization , 1999 .

[60]  J. Amarilla,et al.  Influence of KOH concentration on the γ-MnO2 redox mechanism , 1994 .

[61]  G. K. Williamson,et al.  X-ray line broadening from filed aluminium and wolfram , 1953 .