Complex cocktails: the evolutionary novelty of venoms.

Venoms have evolved on numerous occasions throughout the animal kingdom. These 'biochemical weapon systems' typically function to facilitate, or protect the producing animal from, predation. Most venomous animals remain unstudied despite venoms providing model systems for investigating predator-prey interactions, molecular evolution, functional convergence, and novel targets for pharmaceutical discovery. Through advances in 'omic' technologies, venom composition data have recently become available for several venomous lineages, revealing considerable complexity in the processes responsible for generating the genetic and functional diversity observed in many venoms. Here, we review these recent advances and highlight the ecological and evolutionary novelty of venom systems.

[1]  J. V. Van Beeumen,et al.  The protein composition of honeybee venom reconsidered by a proteomic approach. , 2005, Biochimica et biophysica acta.

[2]  M. Richardson,et al.  Evolutionary origin and development of snake fangs , 2008, Nature.

[3]  J. Biardi,et al.  Rock squirrel (Spermophilus variegatus) blood sera affects proteolytic and hemolytic activities of rattlesnake venoms. , 2011, Toxicon : official journal of the International Society on Toxinology.

[4]  B. Fry From genome to "venome": molecular origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences and related body proteins. , 2005, Genome research.

[5]  W. Hayes,et al.  Cost of venom regeneration in Parabuthus transvaalicus (Arachnida: Buthidae). , 2007, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[6]  B. Olivera Conus Venom Peptides: Reflections from the Biology of Clades and Species , 2002 .

[7]  X. Cousin,et al.  Identification of a Novel Type of Alternatively Spliced Exon from the Acetylcholinesterase Gene of Bungarus fasciatus , 1998, The Journal of Biological Chemistry.

[8]  R. Kini,et al.  From snake venom toxins to therapeutics--cardiovascular examples. , 2012, Toxicon : official journal of the International Society on Toxinology.

[9]  W. Wheeler,et al.  Venom evolution widespread in fishes: a phylogenetic road map for the bioprospecting of piscine venoms. , 2006, The Journal of heredity.

[10]  E. Sánchez,et al.  Neutralization of venoms from two Southern Pacific Rattlesnakes (Crotalus helleri) with commercial antivenoms and endothermic animal sera. , 2004, Toxicon : official journal of the International Society on Toxinology.

[11]  M. Nei,et al.  Evolution by the birth-and-death process in multigene families of the vertebrate immune system. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Li Wenxin,et al.  Genetic mechanisms of scorpion venom peptide diversification. , 2006, Toxicon : official journal of the International Society on Toxinology.

[13]  Holger Scheib,et al.  Evolution of an Arsenal , 2008, Molecular & Cellular Proteomics.

[14]  Vladimir Brusic,et al.  Molecular Evolution and Phylogeny of Elapid Snake Venom Three-Finger Toxins , 2003, Journal of Molecular Evolution.

[15]  J. Krebs,et al.  Arms races between and within species , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[16]  S. Hedges,et al.  Early evolution of the venom system in lizards and snakes , 2006, Nature.

[17]  S. Serrano,et al.  Sex-based individual variation of snake venom proteome among eighteen Bothrops jararaca siblings. , 2006, Toxicon : official journal of the International Society on Toxinology.

[18]  Taehwan Lee,et al.  Geographic Variation in Venom Allelic Composition and Diets of the Widespread Predatory Marine Gastropod Conus ebraeus , 2009, PloS one.

[19]  Larry D. Martin,et al.  The birdlike raptor Sinornithosaurus was venomous , 2009, Proceedings of the National Academy of Sciences.

[20]  Shunyi Zhu,et al.  Adaptive Evolution of Scorpion Sodium Channel Toxins , 2004, Journal of Molecular Evolution.

[21]  A. Kasturiratne,et al.  The Global Burden of Snakebite: A Literature Analysis and Modelling Based on Regional Estimates of Envenoming and Deaths , 2008, PLoS medicine.

[22]  R. Harrison,et al.  Antibody from mice immunized with DNA encoding the carboxyl‐disintegrin and cysteine‐rich domain (JD9) of the haemorrhagic metalloprotease, Jararhagin, inhibits the main lethal component of viper venom , 2000, Clinical and experimental immunology.

[23]  J. Calvete,et al.  Evolution of snake venom disintegrins by positive Darwinian selection. , 2008, Molecular biology and evolution.

[24]  M. Hattori,et al.  Accelerated evolution of Trimeresurus flavoviridis venom gland phospholipase A2 isozymes. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Yehu Moran,et al.  Positions under positive selection--key for selectivity and potency of scorpion alpha-toxins. , 2010, Molecular biology and evolution.

[26]  L. Isbell,et al.  Snakes as agents of evolutionary change in primate brains. , 2006, Journal of human evolution.

[27]  The Chinese Human Genome Sequencing Consortium Insights into social insects from the genome of the honeybee Apis mellifera , 2006 .

[28]  S. Pekár,et al.  Dietary and prey-capture adaptations by which Zodarion germanicum, an ant-eating spider (Araneae: Zodariidae), specialises on the Formicinae , 2008, Naturwissenschaften.

[29]  W. Wüster,et al.  Gene tree parsimony of multilocus snake venom protein families reveals species tree conflict as a result of multiple parallel gene loss. , 2011, Molecular biology and evolution.

[30]  F. Ducancel Endothelin-like peptides , 2005, Cellular and Molecular Life Sciences CMLS.

[31]  B. Devreese,et al.  Bee, wasp and ant venomics pave the way for a component-resolved diagnosis of sting allergy. , 2009, Journal of proteomics.

[32]  S. Mackessy Evolutionary trends in venom composition in the western rattlesnakes (Crotalus viridis sensu lato): toxicity vs. tenderizers. , 2010, Toxicon : official journal of the International Society on Toxinology.

[33]  S. Wagstaff,et al.  Venom gland EST analysis of the saw-scaled viper, Echis ocellatus, reveals novel alpha9beta1 integrin-binding motifs in venom metalloproteinases and a new group of putative toxins, renin-like aspartic proteases. , 2006, Gene.

[34]  H. Heatwole,et al.  Resistances of Sympatric and Allopatric Eels to Sea Snake Venoms , 1995 .

[35]  L. V. Valen,et al.  A new evolutionary law , 1973 .

[36]  H. Scheib,et al.  Novel transcripts in the maxillary venom glands of advanced snakes. , 2012, Toxicon : official journal of the International Society on Toxinology.

[37]  E. Koonin,et al.  Selection in the evolution of gene duplications , 2002, Genome Biology.

[38]  R. Norton,et al.  The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms. , 2009, Annual review of genomics and human genetics.

[39]  W. Maddison Gene Trees in Species Trees , 1997 .

[40]  W. Wüster,et al.  Dentitional phenomena in cobra revisited : spitting and fang structure in the Asiatic species of Naja (Serpentes : Elapidae) , 1992 .

[41]  Elizabeth Pennisi,et al.  Drafting a Tree , 2003, Science.

[42]  M. Sasa Diet and snake venom evolution: can local selection alone explain intraspecific venom variation? , 1999, Toxicon : official journal of the International Society on Toxinology.

[43]  W. Warren,et al.  A limited role for gene duplications in the evolution of platypus venom. , 2012, Molecular biology and evolution.

[44]  R. Straight,et al.  Mojave rattlesnake Crotalus scutulatus scutulatus venom: variation in toxicity with geographical origin. , 1978, Toxicon : official journal of the International Society on Toxinology.

[45]  D. Kordis,et al.  Adaptive evolution of animal toxin multigene families. , 2000, Gene.

[46]  R. Kini,et al.  Eggs-Only Diet: Its Implications for the Toxin Profile Changes and Ecology of the Marbled Sea Snake (Aipysurus eydouxii) , 2004, Journal of Molecular Evolution.

[47]  S. Palumbi,et al.  Gene expression and feeding ecology: evolution of piscivory in the venomous gastropod genus Conus , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[48]  A. Sparrow,et al.  Variation in venom proteins from isolated populations of tiger snakes (Notechis ater niger, N. scutatus) in South Australia. , 1988, Toxicon : official journal of the International Society on Toxinology.

[49]  W. Wüster,et al.  The structural and functional diversification of the Toxicofera reptile venom system. , 2012, Toxicon : official journal of the International Society on Toxinology.

[50]  Anthony T Papenfuss,et al.  Defensins and the convergent evolution of platypus and reptile venom genes. , 2008, Genome research.

[51]  W. Nentwig,et al.  Effects of size, motility and paralysation time of prey on the quantity of venom injected by the hunting spider Cupiennius salei. , 1999, The Journal of experimental biology.

[52]  D Mebs,et al.  Toxicity in animals. Trends in evolution? , 2001, Toxicon : official journal of the International Society on Toxinology.

[53]  H. Greene,et al.  Wallace and Savage: heroes, theories, and venomous snake mimicry , 2005 .

[54]  G. King,et al.  Venomics as a drug discovery platform , 2009, Expert review of proteomics.

[55]  S. Mackessy,et al.  Functional basis of a molecular adaptation: prey-specific toxic effects of venom from Sistrurus rattlesnakes. , 2009, Toxicon : official journal of the International Society on Toxinology.

[56]  Erich Bornberg-Bauer,et al.  Functional and Evolutionary Insights from the Genomes of Three Parasitoid Nasonia Species , 2010, Science.

[57]  H. Kwok,et al.  Novel venom proteins produced by differential domain-expression strategies in beaded lizards and gila monsters (genus Heloderma). , 2010, Molecular biology and evolution.

[58]  F. Kondrashov,et al.  The evolution of gene duplications: classifying and distinguishing between models , 2010, Nature Reviews Genetics.

[59]  G. Huttley,et al.  Dynamic evolution of venom proteins in squamate reptiles , 2012, Nature Communications.

[60]  David J. Williams,et al.  Ending the drought: new strategies for improving the flow of affordable, effective antivenoms in Asia and Africa. , 2011, Journal of proteomics.

[61]  Thomas F Duda,et al.  Extensive and continuous duplication facilitates rapid evolution and diversification of gene families. , 2012, Molecular biology and evolution.

[62]  Matthew H J Cordes,et al.  Molecular evolution, functional variation, and proposed nomenclature of the gene family that includes sphingomyelinase D in sicariid spider venoms. , 2008, Molecular biology and evolution.

[63]  S. Aird,et al.  Prey specificity, comparative lethality and compositional differences of coral snake venoms. , 2001, Comparative biochemistry and physiology. Toxicology & pharmacology : CBP.

[64]  S. Jansa,et al.  Adaptive Evolution of the Venom-Targeted vWF Protein in Opossums that Eat Pitvipers , 2011, PloS one.

[65]  A. Burlingame,et al.  A heteromeric Texas coral snake toxin targets acid-sensing ion channels to produce pain , 2011, Nature.

[66]  R. Lewis,et al.  Use of Venom Peptides to Probe Ion Channel Structure and Function* , 2010, The Journal of Biological Chemistry.

[67]  W. Hodgson,et al.  The pharmacological activity of fish venoms. , 2002, Toxicon : official journal of the International Society on Toxinology.

[68]  W. Wüster,et al.  Coevolution of diet and prey-specific venom activity supports the role of selection in snake venom evolution , 2009, Proceedings of the Royal Society B: Biological Sciences.

[69]  D. Yoshikami,et al.  Combinatorial peptide libraries in drug design: lessons from venomous cone snails. , 1995, Trends in biotechnology.

[70]  Ying Wang,et al.  Insights into social insects from the genome of the honeybee Apis mellifera , 2006, Nature.

[71]  J. Daltry,et al.  Diet and snake venom evolution , 1996, Nature.

[72]  R. Kini,et al.  Denmotoxin, a Three-finger Toxin from the Colubrid Snake Boiga dendrophila (Mangrove Catsnake) with Bird-specific Activity* , 2006, Journal of Biological Chemistry.

[73]  W. Wüster,et al.  Comparative venom gland transcriptome surveys of the saw-scaled vipers (Viperidae: Echis) reveal substantial intra-family gene diversity and novel venom transcripts , 2009, BMC Genomics.

[74]  R. Harrison,et al.  Development of venom toxin-specific antibodies by DNA immunisation: rationale and strategies to improve therapy of viper envenoming. , 2004, Vaccine.

[75]  D. Andrade,et al.  RELATIONSHIP OF VENOM ONTOGENY AND DIET IN BOTHROPS , 1999 .

[76]  F. H. Pough Mimicry of Vertebrates: Are the Rules Different? , 1988, The American Naturalist.

[77]  M. McCue Cost of Producing Venom in Three North American Pitviper Species , 2006, Copeia.

[78]  J. Calvete,et al.  Snake venomics of the Central American rattlesnake Crotalus simus and the South American Crotalus durissus complex points to neurotoxicity as an adaptive paedomorphic trend along Crotalus dispersal in South America. , 2010, Journal of proteome research.

[79]  Markos A. Alexandrou,et al.  Competition and phylogeny determine community structure in Müllerian co-mimics , 2011, Nature.

[80]  W. Wüster,et al.  Venom lethality and diet: differential responses of natural prey and model organisms to the venom of the saw-scaled vipers (Echis). , 2012, Toxicon : official journal of the International Society on Toxinology.

[81]  J. Sweedler,et al.  Diversity of conotoxin types from Conus californicus reflects a diversity of prey types and a novel evolutionary history. , 2011, Toxicon : official journal of the International Society on Toxinology.

[82]  W. Hayes,et al.  Defensive stinging by Parabuthus transvaalicus scorpions: risk assessment and venom metering , 2011, Animal Behaviour.

[83]  B. Hammock,et al.  One scorpion, two venoms: Prevenom of Parabuthus transvaalicus acts as an alternative type of venom with distinct mechanism of action , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[84]  W. Wüster,et al.  Domain loss facilitates accelerated evolution and neofunctionalization of duplicate snake venom metalloproteinase toxin genes. , 2011, Molecular biology and evolution.

[85]  G. King,et al.  Venoms as a platform for human drugs: translating toxins into therapeutics , 2011, Expert opinion on biological therapy.

[86]  E. Remigio,et al.  Evolution of ecological specialization and venom of a predatory marine gastropod , 2008, Molecular ecology.

[87]  W. Hayes Venom metering by juvenile prairie rattlesnakes, Crotalus v. viridis : effects of prey size and experience , 1995, Animal Behaviour.

[88]  W. Nentwig,et al.  Biochemistry, toxicology and ecology of the venom of the spider Cupiennius salei (Ctenidae). , 2004, Toxicon : official journal of the International Society on Toxinology.

[89]  C. Scott,et al.  First evidence of a venom delivery apparatus in extinct mammals , 2005, Nature.

[90]  Miriam K. Konkel,et al.  Genome analysis of the platypus reveals unique signatures of evolution , 2008, Nature.

[91]  S. Liang Proteome and peptidome profiling of spider venoms , 2008, Expert review of proteomics.

[92]  S. Palumbi,et al.  Molecular genetics of ecological diversification: duplication and rapid evolution of toxin genes of the venomous gastropod Conus. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[93]  M. Ondetti,et al.  History of the Design of Captopril and Related Inhibitors of Angiotensin Converting Enzyme , 1991, Hypertension.

[94]  S. Wagstaff,et al.  Bioinformatics and Multiepitope DNA Immunization to Design Rational Snake Antivenom , 2006, PLoS medicine.

[95]  G. King,et al.  Chemical Punch Packed in Venoms Makes Centipedes Excellent Predators* , 2012, Molecular & Cellular Proteomics.

[96]  Mehdi Mobli,et al.  Venomics: a new paradigm for natural products-based drug discovery , 2010, Amino Acids.

[97]  Shunyi Zhu,et al.  Molecular divergence of two orthologous scorpion toxins affecting potassium channels. , 2011, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[98]  S. Wagstaff,et al.  Research strategies to improve snakebite treatment: challenges and progress. , 2011, Journal of proteomics.

[99]  J. Seymour,et al.  Costs of venom production in the common death adder (Acanthophis antarcticus). , 2010, Toxicon : official journal of the International Society on Toxinology.