Extracellular vesicle integrins act as a nexus for platelet adhesion in cerebral microvessels

[1]  P. Rothwell,et al.  Inflammatory Stroke Extracellular Vesicles Induce Macrophage Activation , 2017, Stroke.

[2]  N. Sibson,et al.  Covalent assembly of nanoparticles as a peptidase-degradable platform for molecular MRI , 2017, Nature Communications.

[3]  Meixiang Xiang,et al.  Emerging role of exosome-mediated intercellular communication in vascular remodeling , 2017, Oncotarget.

[4]  M. Goodman,et al.  Impact of Platelets and Platelet-Derived Microparticles on Hypercoagulability Following Burn Injury , 2016, Shock.

[5]  I. Sargent,et al.  Multicolor Flow Cytometry and Nanoparticle Tracking Analysis of Extracellular Vesicles in the Plasma of Normal Pregnant and Pre-eclamptic Women1 , 2013, Biology of reproduction.

[6]  V. Miller,et al.  Methodology for isolation, identification and characterization of microvesicles in peripheral blood. , 2012, Journal of immunological methods.

[7]  G. Douglas,et al.  Molecular imaging with optical coherence tomography using ligand-conjugated microparticles that detect activated endothelial cells: Rational design through target quantification , 2011, Atherosclerosis.

[8]  Kumar Sharma,et al.  Ultrasound Molecular Imaging of Tumor Angiogenesis With an Integrin Targeted Microbubble Contrast Agent , 2011, Investigative radiology.

[9]  M. Alessi,et al.  Platelet-endothelial cell interactions in cerebral malaria: The end of a cordial understanding , 2009, Thrombosis and Haemostasis.

[10]  Robert Sinclair,et al.  Real-time intravital imaging of RGD-quantum dot binding to luminal endothelium in mouse tumor neovasculature. , 2008, Nano letters.

[11]  C. Bode,et al.  A contrast agent recognizing activated platelets reveals murine cerebral malaria pathology undetectable by conventional MRI. , 2008, The Journal of clinical investigation.

[12]  Jurgen E Schneider,et al.  In vivo magnetic resonance imaging of acute brain inflammation using microparticles of iron oxide , 2007, Nature Medicine.

[13]  D. Granger,et al.  The Evolving Paradigm for Blood Cell‐Endothelial Cell Interactions in the Cerebral Microcirculation , 2007, Microcirculation.

[14]  D. Granger,et al.  Angiotensin II type 1 receptor signaling contributes to platelet-leukocyte-endothelial cell interactions in the cerebral microvasculature. , 2007, American journal of physiology. Heart and circulatory physiology.

[15]  A. Baird,et al.  Circulating endothelial microparticles in acute ischemic stroke: a link to severity, lesion volume and outcome , 2006, Journal of thrombosis and haemostasis : JTH.

[16]  John H. Zhang,et al.  Inflammatory responses to ischemia and reperfusion in the cerebral microcirculation. , 2004, Frontiers in bioscience : a journal and virtual library.

[17]  A. Reynolds,et al.  Integrins in angiogenesis: multitalented molecules in a balancing act , 2003, Cell and Tissue Research.

[18]  Arnoud Sonnenberg,et al.  The fibronectin-binding integrins α5β1 and αvβ3 differentially modulate RhoA–GTP loading, organization of cell matrix adhesions, and fibronectin fibrillogenesis , 2002, The Journal of cell biology.

[19]  R. Nieuwland,et al.  Elevated Numbers of Tissue-Factor Exposing Microparticles Correlate With Components of the Metabolic Syndrome in Uncomplicated Type 2 Diabetes Mellitus , 2002, Circulation.

[20]  B. Furie,et al.  Real-time in vivo imaging of platelets, tissue factor and fibrin during arterial thrombus formation in the mouse , 2002, Nature Medicine.

[21]  Robert C. Liddington,et al.  Faculty Opinions recommendation of Crystal structure of the extracellular segment of integrin alpha Vbeta3 in complex with an Arg-Gly-Asp ligand. , 2002 .

[22]  Thilo Stehle,et al.  Crystal Structure of the Extracellular Segment of Integrin αVβ3 in Complex with an Arg-Gly-Asp Ligand , 2002, Science.

[23]  H. Adelsberger,et al.  Vitronectin Receptor (αvβ3) Mediates Platelet Adhesion to the Luminal Aspect of Endothelial Cells Implications for Reperfusion in Acute Myocardial Infarction , 1997 .

[24]  G. Davis,et al.  Regulation of alpha 2 beta 1-mediated fibroblast migration on type I collagen by shifts in the concentrations of extracellular Mg2+ and Ca2+ [published erratum appears in J Cell Biol 1992 Jul;118(1):219] , 1992, The Journal of cell biology.

[25]  R. Timpl,et al.  Arg‐Gly‐Asp constrained within cyclic pentapoptides Strong and selective inhibitors of cell adhesion to vitronectin and laminin fragment P1 , 1991, FEBS letters.

[26]  M. Gawaz,et al.  Ligand bridging mediates integrin alpha IIb beta 3 (platelet GPIIB-IIIA) dependent homotypic and heterotypic cell-cell interactions. , 1991, The Journal of clinical investigation.

[27]  J. Ylänne RGD peptides may only temporarily inhibit cell adhesion to fibronectin , 1990, FEBS letters.

[28]  E. Ruoslahti,et al.  Cell surface distribution of fibronectin and vitronectin receptors depends on substrate composition and extracellular matrix accumulation , 1988, The Journal of cell biology.

[29]  Z. Fayad,et al.  Molecular imaging of tumor angiogenesis using αvβ3-integrin targeted multimodal quantum dots , 2008, Angiogenesis.

[30]  J Amédée,et al.  Function of linear and cyclic RGD-containing peptides in osteoprogenitor cells adhesion process. , 2002, Biomaterials.

[31]  H. Adelsberger,et al.  Vitronectin receptor (alpha(v)beta3) mediates platelet adhesion to the luminal aspect of endothelial cells: implications for reperfusion in acute myocardial infarction. , 1997, Circulation.