Towards a resolved Kennicutt-Schmidt law at high redshift

Massive galaxies in the distant Universe form stars at much higher rates than today. Although direct resolution of the star forming regions of these galaxies is still a challenge, recent molecular gas observations at the IRAM Plateau de Bure interferometer enable us to study the star formation efficiency on subgalactic scales around redshift z = 1.2. We present a method for obtaining the gas and star formation rate (SFR) surface densities of ensembles of clumps composing galaxies at this redshift, even though the corresponding scales are not resolved. This method is based on identifying these structures in position-velocity diagrams corresponding to slices within the galaxies. We use unique IRAM observations of the CO(3–2) rotational line and DEEP2 spectra of four massive star forming distant galaxies – EGS13003805, EGS13004291, EGS12007881, and EGS13019128 in the AEGIS terminology – to determine the gas and SFR surface densities of the identifiable ensembles of clumps that constitute them. The integrated CO line luminosity is assumed to be directly proportional to the total gas mass, and the SFR is deduced from the [OII] line. We identify the ensembles of clumps with the angular resolution available in both CO and [OII] spectroscopy; i.e., 1–1.5′′. SFR and gas surface densities are averaged in areas of this size, which is also the thickness of the DEEP2 slits and of the extracted IRAM slices, and we derive a spatially resolved Kennicutt-Schmidt (KS) relation on a scale of ~8 kpc. The data generally indicates an average depletion time of 1.9 Gyr, but with significant variations from point to point within the galaxies.

[1]  B. Weiner,et al.  PHIBSS: MOLECULAR GAS CONTENT AND SCALING RELATIONS IN z ∼ 1–3 MASSIVE, MAIN-SEQUENCE STAR-FORMING GALAXIES , 2012, 1211.5743.

[2]  Cambridge,et al.  PHYSICAL CONDITIONS IN MOLECULAR CLOUDS IN THE ARM AND INTERARM REGIONS OF M51 , 2012, 1210.6349.

[3]  F. Bournaud,et al.  STAR FORMATION LAWS AND THRESHOLDS FROM INTERSTELLAR MEDIUM STRUCTURE AND TURBULENCE , 2012, 1210.2355.

[4]  Edinburgh,et al.  THE PROPERTIES OF THE STAR-FORMING INTERSTELLAR MEDIUM AT z = 0.8–2.2 FROM HiZELS: STAR FORMATION AND CLUMP SCALING LAWS IN GAS-RICH, TURBULENT DISKS , 2012, 1209.1396.

[5]  J. Kneib,et al.  IONIZED NITROGEN AT HIGH REDSHIFT , 2012, 1203.6852.

[6]  B. Madore,et al.  ESTIMATING THE STAR FORMATION RATE AT 1 kpc SCALES IN NEARBY GALAXIES , 2012, 1202.2873.

[7]  A. Koekemoer,et al.  GALAXY STRUCTURE AND MODE OF STAR FORMATION IN THE SFR–MASS PLANE FROM z ∼ 2.5 TO z ∼ 0.1 , 2011, 1107.0317.

[8]  Jordi Cepa,et al.  ON STAR FORMATION RATES AND STAR FORMATION HISTORIES OF GALAXIES OUT TO z ∼ 3 , 2011, 1106.5502.

[9]  R. Genzel,et al.  CONSTRAINTS ON THE ASSEMBLY AND DYNAMICS OF GALAXIES. II. PROPERTIES OF KILOPARSEC-SCALE CLUMPS IN REST-FRAME OPTICAL EMISSION OF z ∼ 2 STAR-FORMING GALAXIES , 2011, 1104.0248.

[10]  R. Giovanelli,et al.  COLD GASS, an IRAM legacy survey of molecular gas in massive galaxies - II. The non-universality of the molecular gas depletion time-scale , 2011, 1104.0019.

[11]  E. Brinks,et al.  A CONSTANT MOLECULAR GAS DEPLETION TIME IN NEARBY DISK GALAXIES , 2011, 1102.1720.

[12]  Alison L. Coil,et al.  THE DEEP3 GALAXY REDSHIFT SURVEY: KECK/DEIMOS SPECTROSCOPY IN THE GOODS-N FIELD , 2011, 1101.4018.

[13]  J. Schaye,et al.  The rates and modes of gas accretion on to galaxies and their gaseous haloes , 2010, 1011.2491.

[14]  F. Mannucci,et al.  A fundamental relation between mass, SFR and metallicity in local and high redshift galaxies , 2010, 1005.0006.

[15]  B. Weiner,et al.  A study of the gas–star formation relation over cosmic time , 2010, 1003.5180.

[16]  M. C. Cooper,et al.  High molecular gas fractions in normal massive star-forming galaxies in the young Universe , 2010, Nature.

[17]  J. Neill,et al.  THE STAR FORMATION LAW AT LOW SURFACE DENSITY , 2009, 0903.3015.

[18]  F. Bournaud,et al.  UNSTABLE DISKS AT HIGH REDSHIFT: EVIDENCE FOR SMOOTH ACCRETION IN GALAXY FORMATION , 2009, 0902.2806.

[19]  Daniel Ceverino,et al.  FORMATION OF MASSIVE GALAXIES AT HIGH REDSHIFT: COLD STREAMS, CLUMPY DISKS, AND COMPACT SPHEROIDS , 2009, 0901.2458.

[20]  B. Madore,et al.  THE STAR FORMATION EFFICIENCY IN NEARBY GALAXIES: MEASURING WHERE GAS FORMS STARS EFFECTIVELY , 2008, 0810.2556.

[21]  B. Madore,et al.  THE STAR FORMATION LAW IN NEARBY GALAXIES ON SUB-KPC SCALES , 2008, 0810.2541.

[22]  R. Teyssier,et al.  Cold streams in early massive hot haloes as the main mode of galaxy formation , 2008, Nature.

[23]  A. Cimatti,et al.  Multiwavelength Study of Massive Galaxies at z~2. I. Star Formation and Galaxy Growth , 2007, 0705.2831.

[24]  Columbia,et al.  Star Formation in AEGIS Field Galaxies since z = 1.1: The Dominance of Gradually Declining Star Formation, and the Main Sequence of Star-forming Galaxies , 2007, astro-ph/0701924.

[25]  E. L. Wright,et al.  The All-Wavelength Extended Groth Strip International Survey (AEGIS) Data Sets , 2006, astro-ph/0607355.

[26]  S. Roweis,et al.  K-Corrections and Filter Transformations in the Ultraviolet, Optical, and Near-Infrared , 2006, astro-ph/0606170.

[27]  J. Moustakas,et al.  ApJ, accepted Preprint typeset using L ATEX style emulateapj v. 6/22/04 OPTICAL STAR-FORMATION RATE INDICATORS , 2006 .

[28]  J. Newman,et al.  Evolution and Color Dependence of the Galaxy Angular Correlation Function: 350,000 Galaxies in 5 Square Degrees , 2004, astro-ph/0403423.

[29]  L. Kewley,et al.  [O II] as a Star Formation Rate Indicator , 2004, astro-ph/0401172.

[30]  Alison L. Coil,et al.  The DEIMOS spectrograph for the Keck II Telescope: integration and testing , 2003, SPIE Astronomical Telescopes + Instrumentation.

[31]  Marc Davis,et al.  Science Objectives and Early Results of the DEEP2 Redshift Survey , 2002, SPIE Astronomical Telescopes + Instrumentation.

[32]  R. Davé,et al.  How do galaxies get their gas , 2002, astro-ph/0407095.

[33]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[34]  Jr.,et al.  The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.

[35]  Simon J. E. Radford,et al.  The Molecular Interstellar Medium in Ultraluminous Infrared Galaxies , 1996, astro-ph/9610166.

[36]  J. E. O'Donnell R(sub nu)-dependent optical and near-ultraviolet extinction , 1994 .

[37]  A. R. Rivolo,et al.  Mass, luminosity, and line width relations of Galactic molecular clouds , 1987 .

[38]  F. Schloerb,et al.  Carbon monoxide as an extragalactic mass tracer , 1986 .

[39]  E. Salpeter The Luminosity function and stellar evolution , 1955 .