Improved methods for the simultaneous inclusion of multiple polynomial zeros

Using a new fixed point relation, the interval methods for the simultaneous inclusion of complex multiple zeros in circular complex arithmetic are constructed. Using the concept of the R-order of convergence of mutually dependent sequences, we present the convergence analysis for the total-step and the single-step methods with Schroder's and Halley-like corrections under computationally verifiable initial conditions. The suggested algorithms possess a great computational efficiency since the increase of the convergence rate is attained without additional calculations. Two numerical examples are given to demonstrate convergence characteristics of the proposed method.

[1]  Miodrag S. Petkovic,et al.  On the guaranteed convergence of new two-point root-finding methods for polynomial zeros , 2013, Numerical Algorithms.

[2]  L. D. Petković A Note on the Evaluation in Circular Arithmetics , 1986 .

[3]  G. Alefeld,et al.  Introduction to Interval Computation , 1983 .

[4]  Mohamed Najim,et al.  Digital Filters Design for Signal and Image Processing , 2006 .

[5]  M. Farkas,et al.  Dynamical models in biology , 2001 .

[6]  Jürgen Herzberger On theQ-order of convergence for coupled sequences arising in iterative numerical processes , 2005, Computing.

[7]  D. Hinrichsen,et al.  Mathematical Systems Theory I: Modelling, State Space Analysis, Stability and Robustness , 2010 .

[8]  Miodrag S. Petković,et al.  Iterative Methods for Simultaneous Inclusion of Polynomial Zeros , 1989 .

[9]  Theodore E. Djaferis Robust Control Design: A Polynomial Approach , 1995 .

[10]  Irene Gargantini,et al.  Further Applications of Circular Arithmetic: Schroeder-Like Algorithms with Error Bounds for Finding Zeros of Polynomials , 1978 .

[11]  Jürgen Herzberger Inclusion methods for nonlinear problems : with applications in engineering, economics and physics , 2003 .

[12]  Miodrag S. Petkovic,et al.  Halley-Like Method with Corrections for the Inclusion of Polynomial Zeros , 1999, Computing.

[13]  Carsten Carstensen,et al.  Some improved inclusion methods for polynomial roots with Weierstrass' corrections , 1993 .

[14]  William H. Sandholm,et al.  Population Games And Evolutionary Dynamics , 2010, Economic learning and social evolution.

[15]  Ramon E. Moore Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.

[16]  P. Henrici,et al.  Circular arithmetic and the determination of polynomial zeros , 1971 .

[17]  Antje Strauss,et al.  Complex Interval Arithmetic And Its Applications , 2016 .

[18]  Attila Szolnoki,et al.  Evolutionary dynamics of group interactions on structured populations: a review , 2013, Journal of The Royal Society Interface.

[19]  Götz Alefeld,et al.  Über Simultanverfahren zur Bestimmung reeller Polynomwurzeln , 1974 .

[20]  Miodrag S. Petkovic,et al.  Efficient Halley-like Methods for the Inclusion of Multiple Zeros of Polynomials , 2012, Comput. Methods Appl. Math..

[21]  Naresh K. Sinha,et al.  Modern Control Systems , 1981, IEEE Transactions on Systems, Man, and Cybernetics.

[22]  Miodrag S. Petkovic,et al.  Efficient methods for the inclusion of polynomial zeros , 2011, Appl. Math. Comput..

[23]  T. D. Lee,et al.  Statistical Theory of Equations of State and Phase Transitions. II. Lattice Gas and Ising Model , 1952 .

[24]  Q. I. Rahman,et al.  Analytic theory of polynomials , 2002 .

[26]  Attila Szolnoki,et al.  Correlation of positive and negative reciprocity fails to confer an evolutionary advantage: Phase transitions to elementary strategies , 2013, ArXiv.

[27]  Nisheeth K. Vishnoi Zeros of Polynomials and their Applications to Theory : A Primer , 2013 .

[28]  Carsten Carstensen,et al.  An improvement of Gargantini's simultaneous inclusion method for polynomial roots by Schro¨der's correction , 1994 .

[29]  Irene Gargantini,et al.  Parallel laguerre iterations: The complex case , 1976 .

[30]  G. Szabó,et al.  Defense mechanisms of empathetic players in the spatial ultimatum game. , 2012, Physical review letters.

[31]  John R. Hauser,et al.  Numerical Methods for Nonlinear Engineering Models , 2009 .

[32]  T. D. Lee,et al.  Statistical Theory of Equations of State and Phase Transitions. I. Theory of Condensation , 1952 .

[33]  D. E. Matthews Evolution and the Theory of Games , 1977 .

[34]  Irene Gargantini,et al.  The numerical stability of simultaneous iterations via square-rooting , 1979 .

[35]  M. Gopal,et al.  Control Systems: Principles and Design , 2006 .

[36]  Attila Szolnoki,et al.  Coevolutionary Games - A Mini Review , 2009, Biosyst..