Going, going, gone: localizing abrupt offsets of moving objects.

When a moving object abruptly disappears, this profoundly influences its localization by the visual system. In Experiment 1, 2 aligned objects moved across the screen, and 1 of them abruptly disappeared. Observers reported seeing the objects misaligned at the time of the offset, with the continuing object leading. Experiment 2 showed that the perceived forward displacement of the moving object depended on speed and that offsets were localized accurately. Two competing representations of position for moving objects are proposed: 1 based on a spatially extrapolated internal model, and the other based on transient signals elicited by sudden changes in the object trajectory that can correct the forward-shifted position. Experiment 3 measured forward displacements for moving objects that disappeared only for a short time or abruptly reduced contrast by various amounts. Manipulating the relative strength of the 2 position representations in this way resulted in intermediate positions being perceived, with weaker motion signals or stronger transients leading to less forward displacement. This 2-process mechanism is advantageous because it uses available information about object position to maximally reduce spatio-temporal localization errors.

[1]  R. Desimone Visual attention mediated by biased competition in extrastriate visual cortex. , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[2]  I. Murakami,et al.  Latency difference, not spatial extrapolation , 1998, Nature Neuroscience.

[3]  Á. Pascual-Leone,et al.  Fast Backprojections from the Motion to the Primary Visual Area Necessary for Visual Awareness , 2001, Science.

[4]  Friedrich W. Fröhlich,et al.  Über die Messung der Empfindungszeit , 1930 .

[5]  Michael J. Berry,et al.  Synchronized Firing among Retinal Ganglion Cells Signals Motion Reversal , 2007, Neuron.

[6]  Rainer Goebel,et al.  The temporal characteristics of motion processing in hMT/V5+: Combining fMRI and neuronavigated TMS , 2006, NeuroImage.

[7]  D. Burr Motion smear , 1980, Nature.

[8]  Christian Keysers,et al.  Visual masking and RSVP reveal neural competition , 2002, Trends in Cognitive Sciences.

[9]  A. Leventhal,et al.  Signal timing across the macaque visual system. , 1998, Journal of neurophysiology.

[10]  F. Chavane,et al.  Imaging cortical correlates of illusion in early visual cortex , 2004, Nature.

[11]  Michael J. Berry,et al.  Anticipation of moving stimuli by the retina , 1999, Nature.

[12]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[13]  R. Grush Internal models and the construction of time: generalizing from state estimation to trajectory estimation to address temporal features of perception, including temporal illusions , 2005, Journal of neural engineering.

[14]  O. Hikosaka,et al.  Focal visual attention produces illusory temporal order and motion sensation , 1993, Vision Research.

[15]  V. Lamme,et al.  The distinct modes of vision offered by feedforward and recurrent processing , 2000, Trends in Neurosciences.

[16]  Shinsuke Shimojo,et al.  Compensation of neural delays in visual‐motor behaviour: No evidence for shorter afferent delays for visual motion , 2004 .

[17]  T J Sejnowski,et al.  Motion integration and postdiction in visual awareness. , 2000, Science.

[18]  Eli Brenner,et al.  The role of uncertainty in the systematic spatial mislocalization of moving objects. , 2006, Journal of experimental psychology. Human perception and performance.

[19]  Boris S. Gutkin,et al.  Turning On and Off with Excitation: The Role of Spike-Timing Asynchrony and Synchrony in Sustained Neural Activity , 2001, Journal of Computational Neuroscience.

[20]  J. Bharucha,et al.  Judged displacement in apparent vertical and horizontal motion , 1988, Perception & psychophysics.

[21]  R. Nijhawan,et al.  Neural delays, visual motion and the flash-lag effect , 2002, Trends in Cognitive Sciences.

[22]  Markus Lappe,et al.  A model of the perceived relative positions of moving objects based upon a slow averaging process , 2000, Vision Research.

[23]  Romi Nijhawan,et al.  Motion extrapolation in catching , 1994, Nature.

[24]  Romi Nijhawan,et al.  Visual prediction: Psychophysics and neurophysiology of compensation for time delays , 2008, Behavioral and Brain Sciences.

[25]  F A Wichmann,et al.  Ning for Helpful Comments and Suggestions. This Paper Benefited Con- Siderably from Conscientious Peer Review, and We Thank Our Reviewers the Psychometric Function: I. Fitting, Sampling, and Goodness of Fit , 2001 .

[26]  Gerrit W. Maus,et al.  Motion Extrapolation Into the Blind Spot , 2008, Psychological science.

[27]  D G Pelli,et al.  The VideoToolbox software for visual psychophysics: transforming numbers into movies. , 1997, Spatial vision.

[28]  A. Watson,et al.  Quest: A Bayesian adaptive psychometric method , 1983, Perception & psychophysics.

[29]  J. Freyd,et al.  A velocity effect for representational momentum , 1985 .

[30]  P. Pazo-Álvarez,et al.  Automatic detection of motion direction changes in the human brain , 2004, The European journal of neuroscience.

[31]  S L Macknik,et al.  The role of spatiotemporal edges in visibility and visual masking. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Juha Silvanto,et al.  Double dissociation of V1 and V5/MT activity in visual awareness. , 2005, Cerebral cortex.

[33]  David Whitney,et al.  Flexible retinotopy: motion-dependent position coding in the visual cortex. , 2010, Science.

[34]  R J Ilmoniemi,et al.  Spatiotemporal activity of a cortical network for processing visual motion revealed by MEG and fMRI. , 1999, Journal of neurophysiology.

[35]  Mazyar Fallah,et al.  A Motion-Dependent Distortion of Retinotopy in Area V4 , 2006, Neuron.

[36]  A. Sillito,et al.  Always returning: feedback and sensory processing in visual cortex and thalamus , 2006, Trends in Neurosciences.

[37]  Felix Wichmann,et al.  The psychometric function: I , 2001 .

[38]  Rajesh P. N. Rao,et al.  Optimal Smoothing in Visual Motion Perception , 2001, Neural Computation.

[39]  M. Lappe,et al.  Neuronal latencies and the position of moving objects , 2001, Trends in Neurosciences.

[40]  Sonja Stork,et al.  Comparing mislocalizations with moving stimuli: The Fröhlich effect, the flash-lag, and representational momentum , 2002 .

[41]  Felix Wichmann,et al.  The psychometric function: II. Bootstrap-based confidence intervals and sampling , 2001, Perception & psychophysics.

[42]  D. McCormick,et al.  Turning on and off recurrent balanced cortical activity , 2003, Nature.

[43]  Kuno Kirschfeld,et al.  The Fröhlich effect: a consequence of the interaction of visual focal attention and metacontrast , 1999, Vision Research.

[44]  Wolfram Erlhagen,et al.  Internal models for visual perception , 2003, Biological Cybernetics.

[45]  Shinsuke Shimojo,et al.  Changing objects lead briefly flashed ones , 2000, Nature Neuroscience.

[46]  Stanley A. Klein,et al.  Extrapolation or attention shift? , 1995, Nature.

[47]  Bruno G. Breitmeyer,et al.  Visual masking : an integrative approach , 1984 .

[48]  Y. Frégnac,et al.  Visual input evokes transient and strong shunting inhibition in visual cortical neurons , 1998, Nature.

[49]  Philip J. Kellman,et al.  The aperture capture effect: Misperceived forms in dynamic occlusion displays , 2010 .

[50]  Romi Nijhawan,et al.  Extrapolation or attention shift? , 1995, Nature.

[51]  Romi Nijhawan,et al.  Forward displacements of fading objects in motion: The role of transient signals in perceiving position , 2006, Vision Research.

[52]  Gopathy Purushothaman,et al.  Moving ahead through differential visual latency , 1998, Nature.

[53]  Semir Zeki,et al.  Perceptual compression of space through position integration , 2006, Proceedings of the Royal Society B: Biological Sciences.

[54]  Y Dan,et al.  Motion-Induced Perceptual Extrapolation of Blurred Visual Targets , 2001, The Journal of Neuroscience.

[55]  P. Clarke,et al.  Visual evoked potentials to sudden reversal of the motion of a pattern. , 1972, Brain research.

[56]  D Kerzel,et al.  The role of perception in the mislocalization of the final position of a moving target. , 2001, Journal of experimental psychology. Human perception and performance.

[57]  E. Brenner,et al.  Motion extrapolation is not responsible for the flash–lag effect , 2000, Vision Research.

[58]  David Whitney,et al.  Motion distorts visual space: shifting the perceived position of remote stationary objects , 2000, Nature Neuroscience.

[59]  D. Kerzel Eye movements and visible persistence explain the mislocalization of the final position of a moving target , 2000, Vision Research.

[60]  Adam M Sillito,et al.  Corticothalamic interactions in the transfer of visual information. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[61]  C. Hess,et al.  Untersuchungen über den Erregungsvorgang im Sehorgan bei kurz- und bei längerdauernder Reizung , 1904, Archiv für die gesamte Physiologie des Menschen und der Tiere.

[62]  B G Breitmeyer,et al.  Backward masking by pattern stimulus offset. , 1981, Journal of experimental psychology. Human perception and performance.

[63]  J. Lewis,et al.  Probit Analysis (3rd ed). , 1972 .

[64]  Ryota Kanai,et al.  Stopping the motion and sleuthing the flash-lag effect: spatial uncertainty is the key to perceptual mislocalization , 2004, Vision Research.

[65]  Philip J. Kellman,et al.  Underestimation of velocity after occlusion causes the aperture-capture illusion , 2010 .

[66]  Terrence J Sejnowski,et al.  Motion signals bias localization judgments: a unified explanation for the flash-lag, flash-drag, flash-jump, and Frohlich illusions. , 2007, Journal of vision.