Topological quantum memory aÖ

[1]  P. Gennes Scaling Concepts in Polymer Physics , 1979 .

[2]  D. Gottesman The Heisenberg Representation of Quantum Computers , 1998, quant-ph/9807006.

[3]  M. Ben-Or,et al.  Limitations of Noisy Reversible Computation , 1996, quant-ph/9611028.

[4]  Nishimori Point in Random-Bond Ising and Potts Models in 2D , 2001, cond-mat/0112069.

[5]  H. Kitatani The Verticality of the Ferromagnetic-Spin Glass Phase Boundary of the ± J Ising Model in the p- T Plane , 1992 .

[6]  A. Kitaev,et al.  Quantum codes on a lattice with boundary , 1998, quant-ph/9811052.

[7]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[8]  A. Steane Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[9]  A. Kitaev Quantum Error Correction with Imperfect Gates , 1997 .

[10]  Michael H. Freedman,et al.  Projective Plane and Planar Quantum Codes , 2001, Found. Comput. Math..

[11]  M. Freedman,et al.  Topological Quantum Computation , 2001, quant-ph/0101025.

[12]  J. Edmonds Paths, Trees, and Flowers , 1965, Canadian Journal of Mathematics.

[13]  John Preskill,et al.  Topological Quantum Computation , 1998, QCQC.

[14]  Dorit Aharonov,et al.  Fault-tolerant quantum computation with constant error , 1997, STOC '97.

[15]  A. Kitaev Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[16]  Peter W. Shor,et al.  Fault-tolerant quantum computation , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[17]  N. Read,et al.  Random-bond Ising model in two dimensions: The Nishimori line and supersymmetry , 2001 .

[18]  Hidetoshi Nishimori,et al.  Geometry-Induced Phase Transition in the ±J Ising Model , 1986 .

[19]  J. T. Chalker,et al.  Two-dimensional random-bond Ising model, free fermions, and the network model , 2002 .

[20]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[21]  Daniel Gottesman Fault-tolerant quantum computation with local gates , 2000 .

[22]  E. Knill,et al.  Resilient quantum computation: error models and thresholds , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.