RESOLVING THE GAP AND AU-SCALE ASYMMETRIES IN THE PRE-TRANSITIONAL DISK OF V1247 ORIONIS

Pre-transitional disks are protoplanetary disks with a gapped disk structure, potentially indicating the presence of young planets in these systems. In order to explore the structure of these objects and their gap-opening mechanism, we observed the pre-transitional disk V1247 Orionis using the Very Large Telescope Interferometer, the Keck Interferometer, Keck-II, Gemini South, and IRTF. This allows us to spatially resolve the AU-scale disk structure from near- to mid-infrared wavelengths (1.5-13 μm), tracing material at different temperatures and over a wide range of stellocentric radii. Our observations reveal a narrow, optically thick inner-disk component (located at 0.18 AU from the star) that is separated from the optically thick outer disk (radii 46 AU), providing unambiguous evidence for the existence of a gap in this pre-transitional disk. Surprisingly, we find that the gap region is filled with significant amounts of optically thin material with a carbon-dominated dust mineralogy. The presence of this optically thin gap material cannot be deduced solely from the spectral energy distribution, yet it is the dominant contributor at mid-infrared wavelengths. Furthermore, using Keck/NIRC2 aperture masking observations in the H, K', and L' bands, we detect asymmetries in the brightness distribution on scales of ~15-40 AU, i.e., within the gap region. The detected asymmetries are highly significant, yet their amplitude and direction changes with wavelength, which is not consistent with a companion interpretation but indicates an inhomogeneous distribution of the gap material. We interpret this as strong evidence for the presence of complex density structures, possibly reflecting the dynamical interaction of the disk material with sub-stellar mass bodies that are responsible for the gap clearing.

[1]  H. M. Lee,et al.  Optical properties of interstellar graphite and silicate grains , 1984 .

[2]  Sebastiano Ligori,et al.  Mid-infrared sizes of circumstellar disks around Herbig Ae/Be stars measured with MIDI on the VLTI , 2004 .

[3]  Sebastien Morel,et al.  Interferometric Observation at Mid-Infrared Wave-lengths with MIDI , 2003 .

[4]  S. Tremaine,et al.  The excitation of density waves at the Lindblad and corotation resonances by an external potential. , 1979 .

[5]  Catherine Espaillat,et al.  TRANSITIONAL AND PRE-TRANSITIONAL DISKS: GAP OPENING BY MULTIPLE PLANETS? , 2010, 1012.4395.

[6]  C. Dominik,et al.  Dust coagulation in protoplanetary disks: A rapid depletion of small grains , 2004, astro-ph/0412117.

[7]  C. A. Grady,et al.  SPIRAL ARMS IN THE ASYMMETRICALLY ILLUMINATED DISK OF MWC 758 AND CONSTRAINTS ON GIANT PLANETS , 2012, 1212.1466.

[8]  S. Seager,et al.  Mass-Radius Relationships for Solid Exoplanets , 2007, 0707.2895.

[9]  G. Chauvin,et al.  A companion candidate in the gap of the T Chamaeleontis transitional disk , 2011, 1102.4982.

[10]  S. Sharpless Evolutionary Effects in the Orion Association. , 1962 .

[11]  N. Madhusudhan,et al.  A POSSIBLE CARBON-RICH INTERIOR IN SUPER-EARTH 55 Cancri e , 2012, 1210.2720.

[12]  R. L. Akeson,et al.  Spectrally Dispersed K-Band Interferometric Observations of Herbig Ae/Be Sources: Inner Disk Temperature Profiles , 2006, astro-ph/0611447.

[13]  Beth Biller,et al.  A LIKELY CLOSE-IN LOW-MASS STELLAR COMPANION TO THE TRANSITIONAL DISK STAR HD 142527 , 2012, 1206.2654.

[14]  K. Flaherty,et al.  INFRARED VARIABILITY OF EVOLVED PROTOPLANETARY DISKS: EVIDENCE FOR SCALE HEIGHT VARIATIONS IN THE INNER DISK , 2012, 1202.1553.

[15]  R. Paul Butler,et al.  A New Planet around an M Dwarf: Revealing a Correlation between Exoplanets and Stellar Mass , 2007, 0707.2409.

[16]  Ralf Siebenmorgen,et al.  High Resolution Infrared Spectroscopy in Astronomy, Proceedings of an ESO Workshop held at Garching, Germany, 18-21 November 2003 , 2005 .

[17]  Paul S. Smith,et al.  EVIDENCE FOR DYNAMICAL CHANGES IN A TRANSITIONAL PROTOPLANETARY DISK WITH MID-INFRARED VARIABILITY , 2009, 0909.5201.

[18]  S. Paardekooper,et al.  Planets opening dust gaps in gas disks , 2004, astro-ph/0408202.

[19]  Keiichi Ohnaka,et al.  Detection of an Inner Gaseous Component in a Herbig Be Star Accretion Disk: Near- and Mid-Infrared Spectrointerferometry and Radiative Transfer modeling of MWC 147 , 2007, 0711.4988.

[20]  Rafael Millan-Gabet,et al.  Astrometry with the Keck Interferometer: The ASTRA project and its science , 2008, 0811.2264.

[21]  Michael F. Skrutskie,et al.  Circumstellar Material Associated with Solar-Type Pre-Main-Sequence Stars: A Possible Constraint on the Timescale for Planet Building , 1989 .

[22]  David Wilner,et al.  Evidence for a Developing Gap in a 10 Myr Old Protoplanetary Disk , 2002 .

[23]  J. Caballero,et al.  Young stars and brown dwarfs surrounding Alnilam (eps Ori) and Mintaka (del Ori) , 2008, 0804.2184.

[24]  T. Henning,et al.  High spatial resolution mid-infrared observations of the low-mass young star TW Hydrae , 2007, 0707.0193.

[25]  C. A. Grady,et al.  DISCOVERY OF SMALL-SCALE SPIRAL STRUCTURES IN THE DISK OF SAO 206462 (HD 135344B): IMPLICATIONS FOR THE PHYSICAL STATE OF THE DISK FROM SPIRAL DENSITY WAVE THEORY , 2012, 1202.6139.

[26]  W. Corradi,et al.  Investigation of 131 Herbig Ae/Be Candidate Stars , 2003 .

[27]  John T. Rayner,et al.  Spextool: A Spectral Extraction Package for SpeX, a 0.8–5.5 Micron Cross‐Dispersed Spectrograph , 2004 .

[28]  D. M. Watson,et al.  UNVEILING THE STRUCTURE OF PRE-TRANSITIONAL DISKS , 2010, 1005.2365.

[29]  Florentin Millour,et al.  Mapping the radial structure of AGN tori , 2011, 1110.4290.

[30]  Munetaka Ueno,et al.  The AKARI/IRC mid-infrared all-sky survey , 2010, 1003.0270.

[31]  Adam L. Kraus,et al.  SPARSE APERTURE MASKING OBSERVATIONS OF THE FL Cha PRE-TRANSITIONAL DISK , 2012, 1211.5721.

[32]  E. Peeters,et al.  The Profiles of the 3-12 Micron Polycyclic Aromatic Hydrocarbon Features , 2004 .

[33]  U. Munari,et al.  An extensive library of 2500–10 500 Å synthetic spectra , 2005 .

[34]  J. D. Monnier,et al.  The Inner Regions of Protoplanetary Disks , 2010, 1006.3485.

[35]  G. Williger,et al.  VARIABILITY OF DISK EMISSION IN PRE-MAIN SEQUENCE AND RELATED STARS. II. VARIABILITY IN THE GAS AND DUST EMISSION OF THE HERBIG Fe STAR SAO 206462 , 2011, 1110.2441.

[36]  Andreas Quirrenbach,et al.  The Disk and Environment of a Young Vega Analog: HD 169142 , 2007 .

[37]  K. Nordsieck,et al.  The Size distribution of interstellar grains , 1977 .

[38]  A. Boss,et al.  Possible Rapid Gas Giant Planet Formation in the Solar Nebula and Other Protoplanetary Disks , 2000, The Astrophysical journal.

[39]  P. Armitage,et al.  Dust dynamics during protoplanetary disc clearing , 2007 .

[40]  Paul S. Smith,et al.  REVEALING THE STRUCTURE OF A PRE-TRANSITIONAL DISK: THE CASE OF THE HERBIG F STAR SAO 206462 (HD 135344B) , 2009 .

[41]  J. Muzerolle,et al.  A SPITZER IRS STUDY OF INFRARED VARIABILITY IN TRANSITIONAL AND PRE-TRANSITIONAL DISKS AROUND T TAURI STARS , 2010, 1012.3500.

[42]  Catherine Espaillat,et al.  DUST FILTRATION BY PLANET-INDUCED GAP EDGES: IMPLICATIONS FOR TRANSITIONAL DISKS , 2012, 1205.5042.

[43]  John T. Rayner,et al.  SpeX: A Medium‐Resolution 0.8–5.5 Micron Spectrograph and Imager for the NASA Infrared Telescope Facility , 2003 .

[44]  David Mouillet,et al.  AMBER : Instrument description and first astrophysical results Special feature AMBER , the near-infrared spectro-interferometric three-telescope VLTI instrument , 2007 .

[45]  D. Wilner,et al.  Gas and dust mass in the disc around the Herbig Ae star HD 169142 , 2008 .

[46]  J. Caballero The occultation events of the Herbig Ae/Be star V1247 Orionis , 2010, 1002.4092.

[47]  Aki Roberge,et al.  Stabilization of the disk around β Pictoris by extremely carbon-rich gas , 2006, Nature.

[48]  Jack J. Lissauer,et al.  Formation of the Giant Planets by Concurrent Accretion of Solids and Gas , 1995 .

[49]  Walter Jaffe Coherent fringe tracking and visibility estimation for MIDI , 2004, SPIE Astronomical Telescopes + Instrumentation.

[50]  M. Schoeller,et al.  Tracing the young massive high-eccentricity binary system Theta 1 Orionis C through periastron passage , 2009, 0902.0365.

[51]  E. Tatulli,et al.  AMBER : Instrument description and first astrophysical results Special feature Interferometric data reduction with AMBER / VLTI . Principle , estimators , and illustration , 2007 .

[52]  Charles M. Telesco,et al.  GatirCam: Gemini mid-infrared imager , 1998, Astronomical Telescopes and Instrumentation.

[53]  On the Planet and the Disk of COKU TAURI/4 , 2004, astro-ph/0406445.

[54]  Rafael Millan-Gabet,et al.  RADIAL STRUCTURE IN THE TW Hya CIRCUMSTELLAR DISK , 2011 .

[55]  M. Ireland,et al.  LkCa 15: A YOUNG EXOPLANET CAUGHT AT FORMATION? , 2011, 1110.3808.

[56]  M. Ireland,et al.  The Disk Around CoKu Tauri/4: Circumbinary, Not Transitional , 2008, 0803.2044.

[57]  L. Hartmann,et al.  The Truncated Disk of CoKu Tau/4 , 2004, astro-ph/0411522.

[58]  Robert L. Kurucz,et al.  SYNTHE Spectrum Synthesis Programs and Line Data. , 1993 .

[59]  Ž. Ivezić,et al.  Discs and haloes in pre-main-sequence stars , 2003, astro-ph/0309037.

[60]  J. Caballero Dynamical parallax of σ Ori AB: mass, distance and age , 2007, 0710.3541.

[61]  L. Hartmann,et al.  On the Diversity of the Taurus Transitional Disks: UX Tauri A and LkCa 15 , 2007, 0710.2892.

[62]  H. Guetter Spectroscopic studies of stars in Ori OB1 (Belt). , 1981 .

[63]  D. Schertl,et al.  Revealing the sub-AU asymmetries of the inner dust rim in the disk around the Herbig Ae star R Coronae Austrinae , 2009, 0911.3653.

[64]  H Germany,et al.  A Method of Correcting Near‐Infrared Spectra for Telluric Absorption , 2002, astro-ph/0211255.

[65]  L. Hartmann,et al.  Magnetospheric Accretion Models for the Hydrogen Emission Lines of T Tauri Stars , 1998 .

[66]  E. Tatulli,et al.  Gas and dust in the inner disk of the Herbig Ae star MWC 758 , 2008, 0803.3606.

[67]  P. Tuthill,et al.  SPATIALLY RESOLVED MID-INFRARED IMAGING OF THE SR 21 TRANSITION DISK , 2009, 0905.3388.

[68]  Frantz Martinache,et al.  MAPPING THE SHORES OF THE BROWN DWARF DESERT. II. MULTIPLE STAR FORMATION IN TAURUS–AURIGA , 2011, 1101.4016.

[69]  P. Varniere,et al.  Constraining the structure of the planet-forming region in the disk of the Herbig Be star HD 100546 ? , 2011, 1104.0905.

[70]  R. Millan-Gabet,et al.  On the interferometric sizes of young stellar objects , 2002 .

[71]  R. P. Butler,et al.  OBLIQUITIES OF HOT JUPITER HOST STARS: EVIDENCE FOR TIDAL INTERACTIONS AND PRIMORDIAL MISALIGNMENTS , 2012, 1206.6105.

[72]  E. Tatulli,et al.  The complex structure of the disk around HD 100546 - The inner few astronomical units , 2010, 1001.2491.

[73]  B. Ercolano,et al.  Can grain growth explain transition disks , 2012, 1206.5802.

[74]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[75]  H. Kataza,et al.  MID-INFRARED IMAGING OF THE TRANSITIONAL DISK OF HD 169142: MEASURING THE SIZE OF THE GAP , 2012, 1204.5364.

[76]  W. Kley Mass flow and accretion through gaps in accretion discs , 1998, astro-ph/9809253.

[77]  G. Duvert,et al.  Optimised data reduction for the AMBER/VLTI instrument , 2009 .

[78]  V. Corcoran,et al.  High. Resolution Infrared Spectroscopy , 1973 .