Embedding of a Maximal Curve in a Hermitian Variety

Let X be a projective, geometrically irreducible, non-singular, algebraic curve defined over a finite field Fq2 of order q2. If the number of Fq2-rational points of X satisfies the Hasse–Weil upper bound, then X is said to be Fq2-maximal. For a point P0 ∈ X(Fq2), let π be the morphism arising from the linear series D: = |(q + 1)P0|, and let N: = dim(D). It is known that N ≥ 2 and that π is independent of P0 whenever X is Fq2-maximal.

[1]  Antonio Cossidente,et al.  United Nations Educational Scientific and Cultural Organization and International Atomic Energy Agency Curves of Large Genus Covered by the Hermitian Curve , 2022 .

[2]  H. Kaji Strangeness of higher order for space curves , 1992 .

[3]  Marcel van der Vlugt,et al.  Generalized Reed–Muller Codes and Curves with Many Points , 1997 .

[4]  José Felipe Voloch,et al.  Frobenius non classical curves , 1990 .

[5]  J. Voloch,et al.  Weierstrass Points and Curves Over Finite Fields , 1986 .

[6]  J. Thas,et al.  General Galois geometries , 1992 .

[7]  Jürgen Rathmann,et al.  The uniform position principle for curves in characteristicp , 1987 .

[8]  B. Segre Forme e geometrie hermitiane, con particolare riguardo al caso finito , 1965 .

[9]  J. Tate Endomorphisms of abelian varieties over finite fields , 1966 .

[10]  Fernando Torres,et al.  On Maximal Curves , 1996 .

[11]  José Felipe Voloch,et al.  Wronskians and linear independence in fields of prime characteristic , 1987 .

[12]  Joe Harris,et al.  Curves in projective space , 1982 .

[13]  Serge Lang,et al.  Abelian varieties , 1983 .

[14]  Abramo Hefez Non-reflexive curves , 1989 .

[15]  J. Voloch,et al.  Duality for projective curves , 1991 .

[16]  On the generic hyperplane section of curves in positive characteristic , 1995 .

[17]  Fernando Torres,et al.  On maximal curves in characteristic two , 1998 .

[18]  Henning Stichtenoth,et al.  A characterization of Hermitian function fields over finite fields. , 1994 .